Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Nonlocal resistance in multi-terminal graphene system

Wang Zi-Bo Jiang Hua Xie Xin-Cheng

Citation:

Nonlocal resistance in multi-terminal graphene system

Wang Zi-Bo, Jiang Hua, Xie Xin-Cheng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Since the nonlocal measurement is helpful in discovering nontrivial physics that is too difficult to detect directly, the nonlocal measurement has now become one of the research focuses in condensed matter physics. Recent experiments find the signal of the giant nonlocal resistance in an H-shaped multi-terminal graphene system. After excluding other possible transport mechanisms, such as the classic Ohmic diffusion and the edge states, researchers tend to believe that the nonlocal resistance signal originates from the spin/valley Hall effect existing in graphene sample. Based on the Landauer-Buttiker formula, the numerical results make a relatively perfect match with the experimental data in the same multi-terminal graphene system. However, though the theoretic research has made certain progress in explaining the existence of the nonlocal resistance, it is still difficult to understand some exotic behaviors of the nonlocal resistance, which exhibits properties even contradictory to the known classical theories. For instance, the nonlocal resistance decreases to zero much more rapidly than the local one, and the giant peak of the nonlocal resistance appears inside the energy gap of the graphene. In this review, the experiments focusing on the nonlocal resistance in multi-terminal graphene system are carefully reviewed. Besides, this review also shows the associated theoretic studies, and an overlook of the future study is also provided.
      Corresponding author: Jiang Hua, jianghuaphy@suda.edu.cnc
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2015CB921102, 2014CB920901), the National Natural Science Foundation of China (Grant Nos. 11704348, 11374219, 11534001, 11404300), and the Science Challenge Project, China (Grant No. TZ2016003-1).
    [1]

    Brune C, Buhmann H, Molenkamp L W, Maciejko J, Qi X L, Zhang S C 2009 Science 325 294

    [2]

    Chang C Z, Zhao W, Kim K Y, Wei P, Jain J K, Liu C, Chan M H W, Moodera J S 2015 Phys. Rev. Lett. 115 057206

    [3]

    Parameswaran S A, Grover T, Abanin D A, Pesin D A, Vishwanath A 2014 Phys. Rev. X 4 031035

    [4]

    McEuen P L, Szafer A, Richter C A, Alphenaar B W, Jain J K, Stone A D, Wheeler R G, Sacks R N 1990 Phys. Rev. Lett. 64 2062

    [5]

    Abanin D A, Morozov S V, Ponomarenko L A, Gorbachev R V, Mayorov A S, Katsnelson M I, Watanabe K, Taniguchi T, Novoselov K S, Levitov L S, Geim A K 2011 Science 332 328

    [6]

    Balakroshnan J, Koon G K W, Jaiswal M, Castro Neto A H, Ozyilmaz B 2013 Nat. Phys. 9 284

    [7]

    Gorbachev R V, Song J C W, Yu G L, Kretinin A V, Withers F, Cao Y, Mishchenko A, Grigoreiva I V, Novoselov K S, Levitov L S, Geim A K 2014 Science 346 448

    [8]

    Shimazaki Y, Yamamoto M, Borzenets I V, Watanabe K, Taniguchi T, Tarucha S 2015 Nat. Phys. 11 1032

    [9]

    Sui M, Chen G, Ma L, Shan W Y, Tian D, Watanabe K, Taniguchi T, Jin X, Yao W, Xiao D, Zhang Y 2015 Nat. Phys. 11 1027

    [10]

    Yamamoto M, Shimazaki Y, Borzenets I V, Tarucha S 2015 J. Phys. Soc. Jpn. 84 121006

    [11]

    Hirsch J E 1999 Phys. Rev. Lett. 83 1834

    [12]

    Murakami S, Nagaosa N, Zhang S C 2003 Science 301 1348

    [13]

    Sinova J, Culcer D, Niu Q, Sinitsyn N A, Jungwirth T, MacDonald A H 2004 Phys. Rev. Lett. 92 126603

    [14]

    Kato Y K, Myers R C, Gossard A C, Awsschalom D D 2004 Science 306 1910

    [15]

    Kimura T, Otani Y 2007 Phys. Rev. Lett. 99 196604

    [16]

    Brune C, Roth A, Novik E G, Konig M, Buhmann H, Hankiewicz E M, Hanke W, Sinova J, Molenkamp L W 2010 Nat. Phys. 6 448

    [17]

    Sheng L, Sheng D N, Ting C S, Haldane F D M 2005 Phys. Rev. Lett. 95 136602

    [18]

    Wang Z, Liu H, Jiang H, Xie X C 2016 Phys. Rev. B 94 035409

    [19]

    Tuan D V, Marmolejo-Tejada J M, Waiintal X, Nikolic B K, Valenzuela S O, Roche S 2016 Phys. Rev. Lett. 117 176602

    [20]

    Chen C L, Chang C R, Nikolic B K 2012 Phys. Rev. B 85 155414

    [21]

    Renard J, Studer M, Folk J A 2014 Phys. Rev. Lett. 112 116601

    [22]

    Wei P, Lee S, Lemaitre F, Pinel L, Cutaia D, Cha W, Katmis F, Zhu Y, Heiman D, Hone J, Moodera J S, Chen C T 2016 Nat. Mater. 15 711

    [23]

    Abanin D A, Gorbachev R V, Novoselov K S, Geim A K, Levitov L S 2011 Phys. Rev. Lett. 107 096601

    [24]

    Xiao D, Yao W, Niu Q 2007 Phys. Rev. Lett. 99 236809

    [25]

    Lensky Y D, Song J C W, Samutpraphoot P, Levitov L S 2015 Phys. Rev. Lett. 114 256601

    [26]

    Marmolejo-Tejada J M, Garcia J H, Chang P H, Sheng X L, Cresti A, Roche S, Nikolic B K 2017 arXiv: 1706.09361v1 [cond-mat.mes-hall]

    [27]

    Saitoh E, Ueda M, Miyajima H, Tatara G 2006 Appl. Phys. Lett. 88 182509

    [28]

    Valenzuela S O, Tinkham M 2006 Nature 442 176

    [29]

    Kimura T, Otani Y, Sato T, Takahashi S, Maekawa S 2007 Phys. Rev. Lett. 98 156601

    [30]

    Balakrishnan J, Koon G K W, Avsar A, Ho Y, Lee J H, Jaiswal M, Baeck S, Ahn J, Ferreira A, Cazalilla M A, Castro Neto A H, Ozyilmaz B 2014 Nat. Commun. 5 4748

    [31]

    Abanin D A, Shytov A V, Levitov L S, Halperin B I 2009 Phys. Rev. B 79 035304

    [32]

    Mihajlovic G, Pearson J E, Garcia M A, Bader S D, Hoffmann A 2009 Phys. Rev. Lett. 103 166601

    [33]

    Sheng L, Sheng D N, Ting C S 2005 Phys. Rev. Lett. 94 016602

    [34]

    Huang C, Chong Y D, Cazalilla M A 2017 Phys. Rev. Lett. 119 136804

    [35]

    Mak K F, McGill K L, Park J, McEuen P L 2014 Science 344 1489

    [36]

    Lee J, Mak K F, Shan J 2016 Nat. Nanotechnol. 11 421

    [37]

    Xiao D, Liu G B, Feng W X, Xu X D, Yao W 2012 Phys. Rev. Lett. 108 196802

    [38]

    Zhai F, Zhao X, Chang K, Xu H Q 2010 Phys. Rev. B 82 115442

    [39]

    Gunlycke D, White C T 2011 Phys. Rev. Lett. 106 136806

    [40]

    Zhai F, Ma Y L, Chang K 2011 New J. Phys. 13 083029

    [41]

    Xiao D, Chang M C, Niu Q 2010 Rev. Mod. Phys. 82 1959

    [42]

    Cresti A, Nikolic B K, Garcia J H, Roche S 2016 La Rivista Del Nuovo Cimento 12 587

  • [1]

    Brune C, Buhmann H, Molenkamp L W, Maciejko J, Qi X L, Zhang S C 2009 Science 325 294

    [2]

    Chang C Z, Zhao W, Kim K Y, Wei P, Jain J K, Liu C, Chan M H W, Moodera J S 2015 Phys. Rev. Lett. 115 057206

    [3]

    Parameswaran S A, Grover T, Abanin D A, Pesin D A, Vishwanath A 2014 Phys. Rev. X 4 031035

    [4]

    McEuen P L, Szafer A, Richter C A, Alphenaar B W, Jain J K, Stone A D, Wheeler R G, Sacks R N 1990 Phys. Rev. Lett. 64 2062

    [5]

    Abanin D A, Morozov S V, Ponomarenko L A, Gorbachev R V, Mayorov A S, Katsnelson M I, Watanabe K, Taniguchi T, Novoselov K S, Levitov L S, Geim A K 2011 Science 332 328

    [6]

    Balakroshnan J, Koon G K W, Jaiswal M, Castro Neto A H, Ozyilmaz B 2013 Nat. Phys. 9 284

    [7]

    Gorbachev R V, Song J C W, Yu G L, Kretinin A V, Withers F, Cao Y, Mishchenko A, Grigoreiva I V, Novoselov K S, Levitov L S, Geim A K 2014 Science 346 448

    [8]

    Shimazaki Y, Yamamoto M, Borzenets I V, Watanabe K, Taniguchi T, Tarucha S 2015 Nat. Phys. 11 1032

    [9]

    Sui M, Chen G, Ma L, Shan W Y, Tian D, Watanabe K, Taniguchi T, Jin X, Yao W, Xiao D, Zhang Y 2015 Nat. Phys. 11 1027

    [10]

    Yamamoto M, Shimazaki Y, Borzenets I V, Tarucha S 2015 J. Phys. Soc. Jpn. 84 121006

    [11]

    Hirsch J E 1999 Phys. Rev. Lett. 83 1834

    [12]

    Murakami S, Nagaosa N, Zhang S C 2003 Science 301 1348

    [13]

    Sinova J, Culcer D, Niu Q, Sinitsyn N A, Jungwirth T, MacDonald A H 2004 Phys. Rev. Lett. 92 126603

    [14]

    Kato Y K, Myers R C, Gossard A C, Awsschalom D D 2004 Science 306 1910

    [15]

    Kimura T, Otani Y 2007 Phys. Rev. Lett. 99 196604

    [16]

    Brune C, Roth A, Novik E G, Konig M, Buhmann H, Hankiewicz E M, Hanke W, Sinova J, Molenkamp L W 2010 Nat. Phys. 6 448

    [17]

    Sheng L, Sheng D N, Ting C S, Haldane F D M 2005 Phys. Rev. Lett. 95 136602

    [18]

    Wang Z, Liu H, Jiang H, Xie X C 2016 Phys. Rev. B 94 035409

    [19]

    Tuan D V, Marmolejo-Tejada J M, Waiintal X, Nikolic B K, Valenzuela S O, Roche S 2016 Phys. Rev. Lett. 117 176602

    [20]

    Chen C L, Chang C R, Nikolic B K 2012 Phys. Rev. B 85 155414

    [21]

    Renard J, Studer M, Folk J A 2014 Phys. Rev. Lett. 112 116601

    [22]

    Wei P, Lee S, Lemaitre F, Pinel L, Cutaia D, Cha W, Katmis F, Zhu Y, Heiman D, Hone J, Moodera J S, Chen C T 2016 Nat. Mater. 15 711

    [23]

    Abanin D A, Gorbachev R V, Novoselov K S, Geim A K, Levitov L S 2011 Phys. Rev. Lett. 107 096601

    [24]

    Xiao D, Yao W, Niu Q 2007 Phys. Rev. Lett. 99 236809

    [25]

    Lensky Y D, Song J C W, Samutpraphoot P, Levitov L S 2015 Phys. Rev. Lett. 114 256601

    [26]

    Marmolejo-Tejada J M, Garcia J H, Chang P H, Sheng X L, Cresti A, Roche S, Nikolic B K 2017 arXiv: 1706.09361v1 [cond-mat.mes-hall]

    [27]

    Saitoh E, Ueda M, Miyajima H, Tatara G 2006 Appl. Phys. Lett. 88 182509

    [28]

    Valenzuela S O, Tinkham M 2006 Nature 442 176

    [29]

    Kimura T, Otani Y, Sato T, Takahashi S, Maekawa S 2007 Phys. Rev. Lett. 98 156601

    [30]

    Balakrishnan J, Koon G K W, Avsar A, Ho Y, Lee J H, Jaiswal M, Baeck S, Ahn J, Ferreira A, Cazalilla M A, Castro Neto A H, Ozyilmaz B 2014 Nat. Commun. 5 4748

    [31]

    Abanin D A, Shytov A V, Levitov L S, Halperin B I 2009 Phys. Rev. B 79 035304

    [32]

    Mihajlovic G, Pearson J E, Garcia M A, Bader S D, Hoffmann A 2009 Phys. Rev. Lett. 103 166601

    [33]

    Sheng L, Sheng D N, Ting C S 2005 Phys. Rev. Lett. 94 016602

    [34]

    Huang C, Chong Y D, Cazalilla M A 2017 Phys. Rev. Lett. 119 136804

    [35]

    Mak K F, McGill K L, Park J, McEuen P L 2014 Science 344 1489

    [36]

    Lee J, Mak K F, Shan J 2016 Nat. Nanotechnol. 11 421

    [37]

    Xiao D, Liu G B, Feng W X, Xu X D, Yao W 2012 Phys. Rev. Lett. 108 196802

    [38]

    Zhai F, Zhao X, Chang K, Xu H Q 2010 Phys. Rev. B 82 115442

    [39]

    Gunlycke D, White C T 2011 Phys. Rev. Lett. 106 136806

    [40]

    Zhai F, Ma Y L, Chang K 2011 New J. Phys. 13 083029

    [41]

    Xiao D, Chang M C, Niu Q 2010 Rev. Mod. Phys. 82 1959

    [42]

    Cresti A, Nikolic B K, Garcia J H, Roche S 2016 La Rivista Del Nuovo Cimento 12 587

  • [1] Zhao Zong-Yang, Li Ming, Zhou Tao. Single magnetic impurity effects in graphene based superconductors. Acta Physica Sinica, 2023, 72(20): 207401. doi: 10.7498/aps.72.20230830
    [2] Cui Lei, Liu Hong-Mei, Ren Chong-Dan, Yang Liu, Tian Hong-Yu, Wang Sa-Ke. Influence of local deformation on valley transport properties in the line defect of graphene. Acta Physica Sinica, 2023, 72(16): 166101. doi: 10.7498/aps.72.20230736
    [3] Liu Xiang-Lian, Li Kai-Zhou, Li Xiao-Qiong, Zhang Qiang. Coexistence of quantum spin and valley hall effect in two-dimensional dielectric photonic crystals. Acta Physica Sinica, 2023, 72(7): 074205. doi: 10.7498/aps.72.20221814
    [4] Li Qing-Xin, Huang Yan, Chen Yi-Wei, Zhu Yu-Jian, Zhu Wang, Song Jun-Wei, An Dong-Dong, Gan Qi-Kang, Wang Kai-Yuan, Wang Hao-Lin, Mai Zhi-Hong, Xi Chuan-Ying, Zhang Jing-Lei, Yu Ge-Liang, Wang Lei. Even-denominator fractional quantum Hall state in bilayer graphene. Acta Physica Sinica, 2022, 71(18): 187202. doi: 10.7498/aps.71.20220905
    [5] Wang Bo-Yun, Zhu Zi-Hao, Gao You-Kang, Zeng Qing-Dong, Liu Yang, Du Jun, Wang Tao, Yu Hua-Qing. Plasmon induced transparency effect based on graphene nanoribbon waveguide side-coupled with rectangle cavities system. Acta Physica Sinica, 2022, 71(2): 024201. doi: 10.7498/aps.71.20211397
    [6] Zhan Zhen, Zhang Ya-Lei, Yuan Sheng-Jun. Lattice relaxation and substrate effects of graphene moiré superlattice. Acta Physica Sinica, 2022, 71(18): 187302. doi: 10.7498/aps.71.20220872
    [7] Plasmon induced transparency effect based on graphene nanoribbon waveguide side–coupled with rectangle cavities system. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211397
    [8] Song Hang, Liu Jie, Chen Chao, Ba Long. Graphene-based field effect transistor with ion-gel film gate. Acta Physica Sinica, 2019, 68(9): 097301. doi: 10.7498/aps.68.20190058
    [9] Yan Jie, Wei Miao-Miao, Xing Yan-Xia. Dephasing effect of quantum spin topological states in HgTe/CdTe quantum well. Acta Physica Sinica, 2019, 68(22): 227301. doi: 10.7498/aps.68.20191072
    [10] Zheng Jia-Jin, Wang Ya-Ru, Yu Ke-Han, Xu Xiang-Xing, Sheng Xue-Xi, Hu Er-Tao, Wei Wei. Field effect transistor photodetector based on graphene and perovskite quantum dots. Acta Physica Sinica, 2018, 67(11): 118502. doi: 10.7498/aps.67.20180129
    [11] Chen Hao, Zhang Xiao-Xia, Wang Hong, Ji Yue-Hua. Near-infrared absorption of graphene-metal nanostructure based on magnetic polaritons. Acta Physica Sinica, 2018, 67(11): 118101. doi: 10.7498/aps.67.20180196
    [12] Han Xiu-Feng, Wan Cai-Hua. Recent progress of nonvolatile, multifunctional and programmable spin logic. Acta Physica Sinica, 2018, 67(12): 127201. doi: 10.7498/aps.67.20180906
    [13] Li Cheng, Cai Li, Wang Sen, Liu Bao-Jun, Cui Huan-Qing, Wei Bo. Switching characteristics of all-spin logic devices based on graphene interconnects. Acta Physica Sinica, 2017, 66(20): 208501. doi: 10.7498/aps.66.208501
    [14] Huang Le, Zhang Zhi-Yong, Peng Lian-Mao. High performance graphene Hall sensors. Acta Physica Sinica, 2017, 66(21): 218501. doi: 10.7498/aps.66.218501
    [15] Deng Fu-Sheng, Sun Yong, Liu Yan-Hong, Dong Li-Juan, Shi Yun-Long. Valley Hall effect induced by pseudomagnetic field in distorted photonic graphene. Acta Physica Sinica, 2017, 66(14): 144204. doi: 10.7498/aps.66.144204
    [16] Wu Chun-Yan, Du Xiao-Wei, Zhou Lin, Cai Qi, Jin Yan, Tang Lin, Zhang Han-Ge, Hu Guo-Hui, Jin Qing-Hui. Characterization and preliminary application of top-gated graphene ion-sensitive field effect transistors. Acta Physica Sinica, 2016, 65(8): 080701. doi: 10.7498/aps.65.080701
    [17] Li Zhi-Quan, Zhang Ming, Peng Tao, Yue Zhong, Gu Er-Dan, Li Wen-Chao. Improvement of the local characteristics of graphene surface plasmon based on guided-mode resonance effect. Acta Physica Sinica, 2016, 65(10): 105201. doi: 10.7498/aps.65.105201
    [18] Zhang Yu-Ping, Liu Ling-Yu, Chen Qi, Feng Zhi-Hong, Wang Jun-Long, Zhang Xiao, Zhang Hong-Yan, Zhang Hui-Yun. Effect of cooling of electron-hole plasma in electrically pumped graphene layer structures with split gates. Acta Physica Sinica, 2013, 62(9): 097202. doi: 10.7498/aps.62.097202
    [19] Liu Jiang-Tao, Huang Jie-Hui, Xiao Wen-Bo, Hu Ai-Rong, Wang Jian-Hui. The influence of gate voltage on electron transport in the graphene field-effect transistor under strong laser field. Acta Physica Sinica, 2012, 61(17): 177202. doi: 10.7498/aps.61.177202
    [20] Tan Zhen-Bing, Ma Li, Liu Guang-Tong, Lü Li, Yang Chang-Li. Scaling law of quantum Hall plateau-to-plateau transition in single layer graphene. Acta Physica Sinica, 2011, 60(10): 107204. doi: 10.7498/aps.60.107204
Metrics
  • Abstract views:  6278
  • PDF Downloads:  327
  • Cited By: 0
Publishing process
  • Received Date:  21 September 2017
  • Accepted Date:  07 October 2017
  • Published Online:  05 November 2017

/

返回文章
返回