Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Improvement of the local characteristics of graphene surface plasmon based on guided-mode resonance effect

Li Zhi-Quan Zhang Ming Peng Tao Yue Zhong Gu Er-Dan Li Wen-Chao

Citation:

Improvement of the local characteristics of graphene surface plasmon based on guided-mode resonance effect

Li Zhi-Quan, Zhang Ming, Peng Tao, Yue Zhong, Gu Er-Dan, Li Wen-Chao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Graphene is a one-atom-thick planar sheet of sp2-bonded carbon atoms that are densely packed in a honeycomb crystal lattice. Graphene has been found to support plasmons in a wide range from infrared to terahertz. The confinement of plasmons in graphene is stronger than that on metallic surface. Moreover, the plasmon properties can be dynamically adjusted by doping or grating graphene. In this study, a composite structure comprised of graphene and subwavelength grating is proposed. Highly confined plasmons in graphene are excited by using a diffraction grating with guided mode resonance effect. The wave vector of plasmonic wave in graphene is far larger than that of light in vacuum. To excite plasmons in graphene with a freespace optical wave, their large difference in wave vector must be overcome. Optical gratings are widely used to compensate for wave vector mismatches. A diffraction wave generated by the grating structure can overcome the large wave vector difference and excite surface plasmons. The guided-mode resonance can greatly enhance the intensity of the diffraction field and the coupling efficiency between graphene and incident light. When the phase matching between illuminating wave and a guide mode supported by grating is achieved, guided-mode resonance effect occurs. A nearly 100% diffraction efficiency peak in the reflection or transmission spectrum occurs at a certain wavelength. In this study, the influences of graphene and grating structure on the local characteristics (the surface electric field Ex/Ein, quality factor Q, and effective mode area Seff) of surface plasmons are investigated. The effects of the structural parameters (the thickness of the buffer layer T2, the grating period p, the carrier mobility , and the Fermi level EF) on localization properties are analyzed by the finite element method (COMSOL). The results reveal that the localizations of the surface plasmons in the graphene surface is significantly improved at the certain parameters. 1) The increase of T2 will reduce the intensity of electric field on graphene (Ex/Ein), but the quality factor will obtain a certain increase. The excition of highly confined SPPs needs to improve Q and keep the intensity of Ex/Ein, so in this study T2 = 10 nm. 2) By adjusting the quality factor of SPPs can be improved significantly without changing the resonance frequency ( = 0.7 m2(Vs), Qmax = 1793). 3) Small changes in p and EF will make the resonance peak shift obviously, and the electric field on graphene is greatly enhanced (p = 235 nm, Ex/Ein = 3154; EF = 0.72 eV, and Ex/Ein = 3968). Strong localization leads to strong light-matter interaction, and thus the proposed structure has the potential to be used as sensors with high sensitivity and high-efficiency nonlinear optical devices, greatly expanding the application of graphene in nano optics.
      Corresponding author: Li Zhi-Quan, lzq54@ysu.edu.cn
    • Funds: Project supported by the 100 Talents Project of Hebei Province, China (Grant No. 4570018) and the Natural Science Foundation of Hebei Province, China (F2014501150).
    [1]

    Xu H J 2013 M. S. Dissertation ( Nanjing: Southeast University) (in Chinese) [徐红菊 2013 硕士学位论文 (南京:东南大学)]

    [2]

    Liu J L 2010 Ph. D. Dissertation (Harbin:Harbin Institute of Technology) (in Chinese) [刘建龙 2010 博士学位论文 (哈尔滨:哈尔滨工业大学)]

    [3]

    Li S J, Gan S, Mu H R, Xu Q Y, Qiao H, Li P F, Xue Y Z, Bao Q L 2014 New Carbon Mater. 29 329 (in Chinese) [李绍娟, 甘胜, 沐浩然, 徐庆阳, 乔虹, 李鹏飞, 薛运周, 鲍桥梁 2014 新型炭材料 29 329]

    [4]

    Wang B, Zhang X, Yuan X, Teng J 2012 Appl. Phys. Lett. 100 131111

    [5]

    Liu Q Y, Zhang Y P, Zhang H Y, L H H, Li T T, Ren G J 2014 Acta Phys. Sin. 63 075201 (in Chinese) [刘亚青, 张玉萍, 张会云, 吕欢欢, 李彤彤, 任广军 2014 物理学报 63 075201]

    [6]

    Liu P Q, Valmorra F, Maissen C, Faist J 2015 Optica 2 135

    [7]

    Wang W, Leung K K, Fong W K, Wang S F, Hui Y Y Y, Lau S P P, Surya C 2012 Proc. SPIE 8470 84700E

    [8]

    Nasari H, Abrishamian M S 2015 J. Lightwave Technol. 33 1

    [9]

    Gerber J A, Samuel B, OCallahan B T, Raschke M B 2014 Phys. Rev. Lett. 113 055502

    [10]

    Wu H Q, Linghu C Y, Lv H M, Qian H 2013 Chin. Phys. B 22 098106

    [11]

    Jablan M, Buljan H, Soljacic M 2009 Phys. Rev. B 80 245435

    [12]

    Chen P, Al A 2011 ACS Nano 5 5855

    [13]

    Dubinov A A, Aleshkin V Y, Mitin V 2011 J. Phys. Conden. Matter 23 145302

    [14]

    Vakil A, Engheta N 2011 Science 332 1291

    [15]

    Chen J, Badioli M, AIonso-Gonzalez P, Thongrat-tanasiri S, Huth F, Osmond J, Spasenović M, Centeno A, Pesquera A, Godignon P, Elorza A Z, Camara N, Garca de Abajo F G, Hillenbrand R, Koppens F H L 2012 Nature 487 77

    [16]

    Fei Z, Rodin A S, Andreev G O, Bao W, McLeod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Castro Neto A H, Lau C N, Keilmann F, Basov D N 2012 Nature 487 82

    [17]

    Zhang K B, Zhang H, Cheng X L 2016 Chin. Phys. B 25 037104

    [18]

    Batke E, Heitmann D, Tu C W 1986 Phy. Rev. B 34 6951

    [19]

    Wu S Q, Liu J S, Wang S L, Hu B 2013 Chin. Phys. B 22 104207

    [20]

    Tae K J, Jaehyeon K, Hongkyw C, Choon-Gi C, Sung-Yool C 2012 Nanotechnology 23 132

    [21]

    Long J, Baisong G, Jason H, Caglar G, Michael M, Zhao H, Hans A B, Xiaogan L, Alex Z, Shen Y R, Wang F 2011 Nat. Nanotechnol. 6 630

    [22]

    Yan H, Li X, Chandra B, Tulevski G, Wu Y, Freitag M, Zhu W, Avouris P, Xia F 2012 Nat. Nanotechnol. 7 330

    [23]

    Zheyu F, Sukosin T, Andrea S, Zheng L, Lulu M, Yumin W, Pulickel M A, Peter N, Naomi J H, Javier G D A 2013 ACS Nano 7 2388

    [24]

    Fang Z, Wang Y, Schlather A E, Zhang L, Pulickel M A, Abajo F J G D, Peter N, Xing Z, Naomi J H 2014 Nano Lett. 14 299

    [25]

    Priambodo P S 2003 Dissertation Abstracts International 26 203

    [26]

    Zhao Y, Chen G, Tao Z, Zhang C, Zhu Y 2014 Rsc Adv. 4 26535

    [27]

    Gao W, Shu J, Qiu C, Xu Q 2012 ACS Nano 6 7806

    [28]

    Nikitin A Y, Guinea F, Garcia-Vidal F J, Martin-Moreno L 2011 Phys. Rev. B 84 3239

    [29]

    Yang X X, Kong X Q, Dai Q 2015 Acta Phys. Sin. 64 106801 (in Chinese) [杨晓霞, 孔祥天, 戴庆 2015 物理学报 64 106801]

    [30]

    Xu P P 2014 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese) [许培鹏 2014 博士学位论文 (杭州: 浙江大学)]

    [31]

    Zhu Y, Bai H, Huang Y 2015 Synthetic Met. 204 57

  • [1]

    Xu H J 2013 M. S. Dissertation ( Nanjing: Southeast University) (in Chinese) [徐红菊 2013 硕士学位论文 (南京:东南大学)]

    [2]

    Liu J L 2010 Ph. D. Dissertation (Harbin:Harbin Institute of Technology) (in Chinese) [刘建龙 2010 博士学位论文 (哈尔滨:哈尔滨工业大学)]

    [3]

    Li S J, Gan S, Mu H R, Xu Q Y, Qiao H, Li P F, Xue Y Z, Bao Q L 2014 New Carbon Mater. 29 329 (in Chinese) [李绍娟, 甘胜, 沐浩然, 徐庆阳, 乔虹, 李鹏飞, 薛运周, 鲍桥梁 2014 新型炭材料 29 329]

    [4]

    Wang B, Zhang X, Yuan X, Teng J 2012 Appl. Phys. Lett. 100 131111

    [5]

    Liu Q Y, Zhang Y P, Zhang H Y, L H H, Li T T, Ren G J 2014 Acta Phys. Sin. 63 075201 (in Chinese) [刘亚青, 张玉萍, 张会云, 吕欢欢, 李彤彤, 任广军 2014 物理学报 63 075201]

    [6]

    Liu P Q, Valmorra F, Maissen C, Faist J 2015 Optica 2 135

    [7]

    Wang W, Leung K K, Fong W K, Wang S F, Hui Y Y Y, Lau S P P, Surya C 2012 Proc. SPIE 8470 84700E

    [8]

    Nasari H, Abrishamian M S 2015 J. Lightwave Technol. 33 1

    [9]

    Gerber J A, Samuel B, OCallahan B T, Raschke M B 2014 Phys. Rev. Lett. 113 055502

    [10]

    Wu H Q, Linghu C Y, Lv H M, Qian H 2013 Chin. Phys. B 22 098106

    [11]

    Jablan M, Buljan H, Soljacic M 2009 Phys. Rev. B 80 245435

    [12]

    Chen P, Al A 2011 ACS Nano 5 5855

    [13]

    Dubinov A A, Aleshkin V Y, Mitin V 2011 J. Phys. Conden. Matter 23 145302

    [14]

    Vakil A, Engheta N 2011 Science 332 1291

    [15]

    Chen J, Badioli M, AIonso-Gonzalez P, Thongrat-tanasiri S, Huth F, Osmond J, Spasenović M, Centeno A, Pesquera A, Godignon P, Elorza A Z, Camara N, Garca de Abajo F G, Hillenbrand R, Koppens F H L 2012 Nature 487 77

    [16]

    Fei Z, Rodin A S, Andreev G O, Bao W, McLeod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Castro Neto A H, Lau C N, Keilmann F, Basov D N 2012 Nature 487 82

    [17]

    Zhang K B, Zhang H, Cheng X L 2016 Chin. Phys. B 25 037104

    [18]

    Batke E, Heitmann D, Tu C W 1986 Phy. Rev. B 34 6951

    [19]

    Wu S Q, Liu J S, Wang S L, Hu B 2013 Chin. Phys. B 22 104207

    [20]

    Tae K J, Jaehyeon K, Hongkyw C, Choon-Gi C, Sung-Yool C 2012 Nanotechnology 23 132

    [21]

    Long J, Baisong G, Jason H, Caglar G, Michael M, Zhao H, Hans A B, Xiaogan L, Alex Z, Shen Y R, Wang F 2011 Nat. Nanotechnol. 6 630

    [22]

    Yan H, Li X, Chandra B, Tulevski G, Wu Y, Freitag M, Zhu W, Avouris P, Xia F 2012 Nat. Nanotechnol. 7 330

    [23]

    Zheyu F, Sukosin T, Andrea S, Zheng L, Lulu M, Yumin W, Pulickel M A, Peter N, Naomi J H, Javier G D A 2013 ACS Nano 7 2388

    [24]

    Fang Z, Wang Y, Schlather A E, Zhang L, Pulickel M A, Abajo F J G D, Peter N, Xing Z, Naomi J H 2014 Nano Lett. 14 299

    [25]

    Priambodo P S 2003 Dissertation Abstracts International 26 203

    [26]

    Zhao Y, Chen G, Tao Z, Zhang C, Zhu Y 2014 Rsc Adv. 4 26535

    [27]

    Gao W, Shu J, Qiu C, Xu Q 2012 ACS Nano 6 7806

    [28]

    Nikitin A Y, Guinea F, Garcia-Vidal F J, Martin-Moreno L 2011 Phys. Rev. B 84 3239

    [29]

    Yang X X, Kong X Q, Dai Q 2015 Acta Phys. Sin. 64 106801 (in Chinese) [杨晓霞, 孔祥天, 戴庆 2015 物理学报 64 106801]

    [30]

    Xu P P 2014 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese) [许培鹏 2014 博士学位论文 (杭州: 浙江大学)]

    [31]

    Zhu Y, Bai H, Huang Y 2015 Synthetic Met. 204 57

  • [1] Gao Feng, Li Huan-Qing, Song Zhuo, Zhao Yu-Hong. The Evolution of Grain Boundary Dislocations in Graphene Induced by Strain: Three-Mode Phase-Field Crystal Method. Acta Physica Sinica, 2024, 73(24): . doi: 10.7498/aps.73.20241368
    [2] Wang Bo-Yun, Zhu Zi-Hao, Gao You-Kang, Zeng Qing-Dong, Liu Yang, Du Jun, Wang Tao, Yu Hua-Qing. Plasmon induced transparency effect based on graphene nanoribbon waveguide side-coupled with rectangle cavities system. Acta Physica Sinica, 2022, 71(2): 024201. doi: 10.7498/aps.71.20211397
    [3] Wang Jian, Zhang Chao-Yue, Yao Zhao-Yu, Zhang Chi, Xu Feng, Yang Yuan. A method of rapidly designing graphene-based terahertz diffusion surface. Acta Physica Sinica, 2021, 70(3): 034102. doi: 10.7498/aps.70.20201034
    [4] Plasmon induced transparency effect based on graphene nanoribbon waveguide side–coupled with rectangle cavities system. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211397
    [5] Guo Xiao-Meng, Qing Fang-Zhu, Li Xue-Song. Applications of graphene in anti-corrosion of metal surface. Acta Physica Sinica, 2021, 70(9): 098102. doi: 10.7498/aps.70.20210349
    [6] Zhao Wen-Qi, Zhang Dai, Cui Ming-Hui, Du Ying, Zhang Shu-Yu, Ou Qiong-Rong. Graphene modification based on plasma technologies. Acta Physica Sinica, 2021, 70(9): 095208. doi: 10.7498/aps.70.20202078
    [7] Jiang Xiao-Wei, Wu Hua, Yuan Shou-Cai. Enhancement of graphene three-channel optical absorption based on metal grating. Acta Physica Sinica, 2019, 68(13): 138101. doi: 10.7498/aps.68.20182173
    [8] Gao Jian, Sang Tian, Li Jun-Lang, Wang La. Double-channel absorption enhancement of graphene using narrow groove metal grating. Acta Physica Sinica, 2018, 67(18): 184210. doi: 10.7498/aps.67.20180848
    [9] Yang Hui-Hui, Gao Feng, Dai Ming-Jin, Hu Ping-An. Research progress of direct synthesis of graphene on dielectric layer. Acta Physica Sinica, 2017, 66(21): 216804. doi: 10.7498/aps.66.216804
    [10] Wang Xiao-Fa, Zhang Jun-Hong, Gao Zi-Ye, Xia Guang-Qiong, Wu Zheng-Mao. Nanosecond mode-locked Tm-doped fiber laser based on graphene saturable absorber. Acta Physica Sinica, 2017, 66(11): 114209. doi: 10.7498/aps.66.114209
    [11] Zhang Hui-Yun, Huang Xiao-Yan, Chen Qi, Ding Chun-Feng, Li Tong-Tong, Lü Huan-Huan, Xu Shi-Lin, Zhang Xiao, Zhang Yu-Ping, Yao Jian-Quan. Tunable terahertz absorber based on complementary graphene meta-surface. Acta Physica Sinica, 2016, 65(1): 018101. doi: 10.7498/aps.65.018101
    [12] Wang Ru, Wang Xiang-Xian, Yang Hua, Ye Song. Theoretical investigation of adjustable period sub-wavelength grating inscribed by TE0 waveguide modes interference lithography. Acta Physica Sinica, 2016, 65(9): 094206. doi: 10.7498/aps.65.094206
    [13] Li Dan, Liu Yong, Wang Huai-Xing, Xiao Long-Sheng, Ling Fu-Ri, Yao Jian-Quan. Gain characteristics of grapheme plasmain terahertz range. Acta Physica Sinica, 2016, 65(1): 015201. doi: 10.7498/aps.65.015201
    [14] Sheng Shi-Wei, Li Kang, Kong Fan-Min, Yue Qing-Yang, Zhuang Hua-Wei, Zhao Jia. Tooth-shaped plasmonic filter based on graphene nanoribbon. Acta Physica Sinica, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [15] Gong Jian, Zhang Li-Wei, Chen Liang, Qiao Wen-Tao, Wang Jian. Negative refraction and bulk polariton properties of the graphene-based hyperbolic metamaterials. Acta Physica Sinica, 2015, 64(6): 067301. doi: 10.7498/aps.64.067301
    [16] Qiao Wen-Tao, Gong Jian, Zhang Li-Wei, Wang Qin, Wang Guo-Dong, Lian Shu-Peng, Chen Peng-Hui, Meng Wei-Wei. Propagation properties of the graphene surface plasmon in comb-like waveguide. Acta Physica Sinica, 2015, 64(23): 237301. doi: 10.7498/aps.64.237301
    [17] Liu Ya-Qing, Zhang Yu-Ping, Zhang Hui-Yun, Lü Huan-Huan, Li Tong-Tong, Ren Guang-Jun. Study on the gain characteristics of terahertz surface plasma in optically pumped graphene multi-layer structures. Acta Physica Sinica, 2014, 63(7): 075201. doi: 10.7498/aps.63.075201
    [18] Zhang Yu-Ping, Liu Ling-Yu, Chen Qi, Feng Zhi-Hong, Wang Jun-Long, Zhang Xiao, Zhang Hong-Yan, Zhang Hui-Yun. Effect of cooling of electron-hole plasma in electrically pumped graphene layer structures with split gates. Acta Physica Sinica, 2013, 62(9): 097202. doi: 10.7498/aps.62.097202
    [19] Huang Hong, Zhao Qing, Jiao Jiao, Liang Gao-Feng, Huang Xiao-Ping. Study of plasmonic nanolaser based on the deep subwavelength scale. Acta Physica Sinica, 2013, 62(13): 135201. doi: 10.7498/aps.62.135201
    [20] Li Li-Min, Pan Hai-Bin, Yan Wen-Sheng, Xu Peng-Shou, Wei Shi-Qiang, Chen Xiu-Fang, Xu Xian-Gang, Kang Chao-Yang, Tang Jun. Preparation of graphene on different-polarity 6H-SiC substrates and the study of their electronic structures. Acta Physica Sinica, 2011, 60(4): 047302. doi: 10.7498/aps.60.047302
Metrics
  • Abstract views:  7157
  • PDF Downloads:  452
  • Cited By: 0
Publishing process
  • Received Date:  10 January 2016
  • Accepted Date:  03 March 2016
  • Published Online:  05 May 2016

/

返回文章
返回