Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Enhancement of graphene three-channel optical absorption based on metal grating

Jiang Xiao-Wei Wu Hua Yuan Shou-Cai

Citation:

Enhancement of graphene three-channel optical absorption based on metal grating

Jiang Xiao-Wei, Wu Hua, Yuan Shou-Cai
PDF
HTML
Get Citation
  • As an emerging new material, graphene has aroused the great research interest. How to improve its absorption efficiency is one of the hot research topics. However, currently most of the studies concentrate in THz band or middle-to-far-infrared region: the research in the visible and near-infrared regions is rare, which greatly limits the applications of graphene in opto-electric fields. In order to improve the absorption efficiency of single-layered graphene in visible and near-infrared band and realize multi-channel optical absorption enhancement, we propose a hybrid structure consisting of graphene-metal grating-dielectric layer-metal substrate. The proposed structure can realize three-channel light absorption enhancement at wavelengths λ1 = 0.553 μm, λ2 = 0.769 μm, and λ3 = 1.130 μm. The maximum absorption efficiency of graphene is 41%, which is 17.82 times that of single-layered graphene. The magnetic field distributions of the hybrid structure at three resonance wavelengths are calculated respectively. It can be found that for the resonance peak λ1, the energy of light field is distributed mainly on the surface of metal grating, which is the characteristic of surface plasmon polariton (SPP) resonance. Therefore, it can be judged that the enhancement of graphene absorption in this channel is due to the SPP resonance stimulated by metal grating. For the resonance peak λ2, the energy of the optical field is mainly confined into the metal grating groove, which is the remarkable resonance characteristic of the Fabry-Pérot (FP) cavity, it can be concluded that the enhancement of the optical absorption of graphene at the resonance peak λ2 is due to the resonance of the FP cavity. When the resonance peak is λ3, the energy of the light field mainly concentrates on the upper and lower edges of the metal grating and permeates into the SiO2 layer, and it can be observed that there are energy concentration points (reddish) at the left end and the right end of the metal grating edge, which is a typical magnetic polariton (MP) resonance feature. Therefore, the enhancement of absorption of graphene at the resonance peak λ3 is caused by the MP resonance induced by the metal grating. We also analyze the absorption characteristic (resonance wavelength and absorption efficiency) dependence on structure parameters by using the finite-difference time-domain (FDTD) simulation. Our study reveals that by increasing grating width, all the three resonance wavelengths are red-shifted, and the absorption efficiency at λ2 and λ3 are both enhanced whereas the absorption efficiency at λ1 almost keeps unchanged. By increasing dielectric layer thickness, λ2 will be red-shifted and λ3 will be blue-shifted, whereas the absorption efficiency at the three resonance wavelengths all remain constant. By increasing graphene chemical potential, none of the wavelengths of the three absorption peaks is shifted, and the absorption efficiency at λ3 decreases. According to our findings, we optimize structure parameters and achieve the light absorption efficiency larger than 97% at the three channels simultaneously, which can make metamaterial absorbers.
      Corresponding author: Wu Hua, wh1125@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61575008, 61650404), the General Research Projects of Zhejiang Provincial Education Department, China (Grant Nos. Y201738091, Y201839950), the Jiangxi Natural Science Foundation, China (Grant No. 20171BAB202037), the Technology Project of Jiangxi Provincial Education Department, China (Grant No. GJJ170819), the Quzhou Science and Technology Project, China (Grant No. 2017G16), Intelligent Manufacturing Industry and Industrial Big Data Technology Application Innovation Team, China(Grant No. QZCX1801), and the Science and the Bidding for Gannan Normal University, China (Grant No. 16zb04).
    [1]

    Zhao B, Zhao J M, Zhang Z M 2014 Appl. Phys. Lett. 105 031905

    [2]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [3]

    Du X, Skachko I, Barker A, Andrei E Y 2008 Nature Nanotechnol. 3 491Google Scholar

    [4]

    梁振江, 刘海霞, 牛燕雄, 尹贻恒 2016 物理学报 65 138501Google Scholar

    Liang Z J, Liu H X, Niu Y X, Yin Y H 2016 Acta Phys. Sin. 65 138501Google Scholar

    [5]

    Sukosin T, Frank H L K, Javier G D A 2012 Phys. Rev. Lett. 108 47401Google Scholar

    [6]

    Zhao Z, Li G, Yu F, Yang H, Chen X, Lu W 2018 Plasmonics 13 2267

    [7]

    梁振江, 刘海霞, 牛燕雄, 刘凯铭, 尹贻恒 2016 物理学报 65 168101Google Scholar

    Liang Z J, Liu H X, Niu Y X, Liu K M,Yin Y H 2016 Acta Phys. Sin. 65 168101Google Scholar

    [8]

    Gao Y, Zhou G, Zhao N, Tsang H K, Shu C 2018 Opt. Lett. 43 1399Google Scholar

    [9]

    Ferrari A, Ferrante C, Virga A, Benfatto L, Martinati M, Fazio D D 2018 Nat. Commun. 9 308Google Scholar

    [10]

    Sun Z, Hasan T, Torrisi F, Popa D, Privitera G, Wang F 2010 Acs Nano 4 803Google Scholar

    [11]

    Qiu J, Shang Y, Chen X, Li S, Ma W, Wan X 2018 J. Mater. Sci. Technol. 34 2197

    [12]

    Zhang L, Ding Z C, Tong T, Liu J 2017 Nanoscale 9 3524Google Scholar

    [13]

    Hsiao T J, Eyassu T, Henderson K, Kim T, Lin C T 2013 Nanotechnology 24 395401Google Scholar

    [14]

    Lu H, Cumming B P, Gu M 2015 Opt. Lett. 40 3647Google Scholar

    [15]

    Fang Z Y, Wang Y M, Schlather A E, Liu Z, Ajayan P M 2014 Nano Lett. 14 299Google Scholar

    [16]

    张会云, 黄晓燕, 陈琦, 丁春峰, 李彤彤 吕欢欢 徐世林 张晓 张玉萍 姚建铨 2016 物理学报 65 018101Google Scholar

    Zhang H Y, Huang X Y, Chen Q, Ding C F, Li T T, Lü H H, Xu S L, Zhang X, Zhang Y P, Yao J 2016 Acta Phys. Sin. 65 018101Google Scholar

    [17]

    Sang T, Wang R, Li J L, Zhou J Y, Wang Y K 2018 Opt. Commun. 413 255Google Scholar

    [18]

    Wang B, Qin C, Huang H, Long H, Wang K, Lu P 2014 Opt. Express 22 25324Google Scholar

    [19]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J 2008 Science 320 1308Google Scholar

    [20]

    Liu Y, Chadha A, Zhao D, Piper J R 2014 Appl. Phys. Lett. 105 181105Google Scholar

    [21]

    Furchi M, Urich A, Pospischil A, Lilley G, Unterrainer K 2012 Nano Lett. 12 2273

    [22]

    Liu J T, Liu N H, Li J, Li X J, Huang J H 2012 Appl. Phys. Lett. 101 052104Google Scholar

    [23]

    Zhang L, Tang L, Wei W, Cheng X, Wang W, Zhang H 2016 Opt. Express 24 20002Google Scholar

    [24]

    Fang Z, Wang Y, Zheng L, Schlather A, Ajayan P M 2012 Acs Nano 6 10222Google Scholar

    [25]

    Xia S X, Zhai X, Huang Y, Liu J Q, Wang L L, Wen S C 2017 Opt. Lett. 42 3052Google Scholar

    [26]

    Thareja V, Kang J H, Yuan H, Milaninia K M, Hwang H Y, Cui Y 2015 Nano Lett. 15 1570Google Scholar

    [27]

    高健, 桑田, 李俊浪, 王啦 2018 物理学报 67 184210Google Scholar

    Gao J, Sang T, Li J L, Wang L 2018 Acta Phys. Sin. 67 184210Google Scholar

    [28]

    Liu B, Tang C, Chen J Pei M, Wang Q 2017 Opt. Express 25 12061Google Scholar

    [29]

    陈浩, 张晓霞, 王鸿, 姬月华 2018 物理学报 67 118101Google Scholar

    Chen H, Zhang X X, Wang H, Ji Y H. 2018 Acta Phys. Sin. 67 118101Google Scholar

    [30]

    Bao Q, Zhang H, Wang B, Ni Z, Wang Y 2011 Nature Photo. 5 411Google Scholar

    [31]

    Zhao B, Zhao J M, Zhang Z M 2015 J. Opt. Soc. Am. B 32 1176Google Scholar

    [32]

    Wang L P, Zhang Z M 2009 Appl. Phys. Lett. 95 111904Google Scholar

    [33]

    Garciavidal F J, Sanchezdehesa J, Dechelette A 2002 J. Lightwave Technol. 11 2191

    [34]

    叶胜威 2018 博士学位论文(成都: 电子科技大学)

    Ye S W 2018 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China)(in Chinese)

    [35]

    Su Z, Yin J, Zhao X 2015 Opt. Express 23 1679Google Scholar

    [36]

    Luo C, Ling F, Yao G 2016 Opt. Express 24 1518Google Scholar

  • 图 1  石墨烯-金属光栅-绝缘层-金属衬底混合结构

    Figure 1.  Graphene-metal grating-insulating layer-metal substrate hybrid structure.

    图 2  有和没有石墨烯层混合结构的吸收率

    Figure 2.  Absorption efficiency of hybrid structure with and without a graphene layer.

    图 3  混合结构在共振波长处的磁场分布

    Figure 3.  Magnetic field distribution of hybrid structure at resonance wavelength.

    图 4  光栅宽度对混合结构吸特性的影响

    Figure 4.  Influence of the width of the grating on the absorption characteristics of the hybrid structure.

    图 5  混合结构RLC等效电路

    Figure 5.  RLC equivalent circuit of hybrid structure.

    图 6  SiO2层厚度d对混合结构吸特性的影响

    Figure 6.  Influence of the thickness of the SiO2 layer on the absorption characteristics of the hybrid structure.

    图 7  化学势对混合结构吸收特性的影响

    Figure 7.  Influence of the chemical potential on the absorption characteristics of the hybrid structure.

    图 8  不同共振波长下化学势对石墨烯介电常数虚部的影响

    Figure 8.  Influence of the chemical potential on the imaginary part of dielectric constant of graphene at different Resonance wavelength.

    图 9  最优参数下混合结构的吸收效率

    Figure 9.  Absorption efficiency of optimal mixed structures.

  • [1]

    Zhao B, Zhao J M, Zhang Z M 2014 Appl. Phys. Lett. 105 031905

    [2]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [3]

    Du X, Skachko I, Barker A, Andrei E Y 2008 Nature Nanotechnol. 3 491Google Scholar

    [4]

    梁振江, 刘海霞, 牛燕雄, 尹贻恒 2016 物理学报 65 138501Google Scholar

    Liang Z J, Liu H X, Niu Y X, Yin Y H 2016 Acta Phys. Sin. 65 138501Google Scholar

    [5]

    Sukosin T, Frank H L K, Javier G D A 2012 Phys. Rev. Lett. 108 47401Google Scholar

    [6]

    Zhao Z, Li G, Yu F, Yang H, Chen X, Lu W 2018 Plasmonics 13 2267

    [7]

    梁振江, 刘海霞, 牛燕雄, 刘凯铭, 尹贻恒 2016 物理学报 65 168101Google Scholar

    Liang Z J, Liu H X, Niu Y X, Liu K M,Yin Y H 2016 Acta Phys. Sin. 65 168101Google Scholar

    [8]

    Gao Y, Zhou G, Zhao N, Tsang H K, Shu C 2018 Opt. Lett. 43 1399Google Scholar

    [9]

    Ferrari A, Ferrante C, Virga A, Benfatto L, Martinati M, Fazio D D 2018 Nat. Commun. 9 308Google Scholar

    [10]

    Sun Z, Hasan T, Torrisi F, Popa D, Privitera G, Wang F 2010 Acs Nano 4 803Google Scholar

    [11]

    Qiu J, Shang Y, Chen X, Li S, Ma W, Wan X 2018 J. Mater. Sci. Technol. 34 2197

    [12]

    Zhang L, Ding Z C, Tong T, Liu J 2017 Nanoscale 9 3524Google Scholar

    [13]

    Hsiao T J, Eyassu T, Henderson K, Kim T, Lin C T 2013 Nanotechnology 24 395401Google Scholar

    [14]

    Lu H, Cumming B P, Gu M 2015 Opt. Lett. 40 3647Google Scholar

    [15]

    Fang Z Y, Wang Y M, Schlather A E, Liu Z, Ajayan P M 2014 Nano Lett. 14 299Google Scholar

    [16]

    张会云, 黄晓燕, 陈琦, 丁春峰, 李彤彤 吕欢欢 徐世林 张晓 张玉萍 姚建铨 2016 物理学报 65 018101Google Scholar

    Zhang H Y, Huang X Y, Chen Q, Ding C F, Li T T, Lü H H, Xu S L, Zhang X, Zhang Y P, Yao J 2016 Acta Phys. Sin. 65 018101Google Scholar

    [17]

    Sang T, Wang R, Li J L, Zhou J Y, Wang Y K 2018 Opt. Commun. 413 255Google Scholar

    [18]

    Wang B, Qin C, Huang H, Long H, Wang K, Lu P 2014 Opt. Express 22 25324Google Scholar

    [19]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J 2008 Science 320 1308Google Scholar

    [20]

    Liu Y, Chadha A, Zhao D, Piper J R 2014 Appl. Phys. Lett. 105 181105Google Scholar

    [21]

    Furchi M, Urich A, Pospischil A, Lilley G, Unterrainer K 2012 Nano Lett. 12 2273

    [22]

    Liu J T, Liu N H, Li J, Li X J, Huang J H 2012 Appl. Phys. Lett. 101 052104Google Scholar

    [23]

    Zhang L, Tang L, Wei W, Cheng X, Wang W, Zhang H 2016 Opt. Express 24 20002Google Scholar

    [24]

    Fang Z, Wang Y, Zheng L, Schlather A, Ajayan P M 2012 Acs Nano 6 10222Google Scholar

    [25]

    Xia S X, Zhai X, Huang Y, Liu J Q, Wang L L, Wen S C 2017 Opt. Lett. 42 3052Google Scholar

    [26]

    Thareja V, Kang J H, Yuan H, Milaninia K M, Hwang H Y, Cui Y 2015 Nano Lett. 15 1570Google Scholar

    [27]

    高健, 桑田, 李俊浪, 王啦 2018 物理学报 67 184210Google Scholar

    Gao J, Sang T, Li J L, Wang L 2018 Acta Phys. Sin. 67 184210Google Scholar

    [28]

    Liu B, Tang C, Chen J Pei M, Wang Q 2017 Opt. Express 25 12061Google Scholar

    [29]

    陈浩, 张晓霞, 王鸿, 姬月华 2018 物理学报 67 118101Google Scholar

    Chen H, Zhang X X, Wang H, Ji Y H. 2018 Acta Phys. Sin. 67 118101Google Scholar

    [30]

    Bao Q, Zhang H, Wang B, Ni Z, Wang Y 2011 Nature Photo. 5 411Google Scholar

    [31]

    Zhao B, Zhao J M, Zhang Z M 2015 J. Opt. Soc. Am. B 32 1176Google Scholar

    [32]

    Wang L P, Zhang Z M 2009 Appl. Phys. Lett. 95 111904Google Scholar

    [33]

    Garciavidal F J, Sanchezdehesa J, Dechelette A 2002 J. Lightwave Technol. 11 2191

    [34]

    叶胜威 2018 博士学位论文(成都: 电子科技大学)

    Ye S W 2018 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China)(in Chinese)

    [35]

    Su Z, Yin J, Zhao X 2015 Opt. Express 23 1679Google Scholar

    [36]

    Luo C, Ling F, Yao G 2016 Opt. Express 24 1518Google Scholar

  • [1] Guan Jian-Fei, Yu Xiao, Ding Guan-Tian, Chen Tao, Lu Yun-Qing. Transmission enhancement effect of distributed Bragg reflector structure covered with metal grating. Acta Physica Sinica, 2024, 73(11): 117301. doi: 10.7498/aps.73.20240357
    [2] Shen Yan-Li, Shi Bing-Rong, Lü Hao, Zhang Shuai-Yi, Wang Xia. Dye random laser enhanced by graphene-based Au nanoparticles. Acta Physica Sinica, 2022, 71(3): 034206. doi: 10.7498/aps.71.20211613
    [3] Guo Xiao-Meng, Qing Fang-Zhu, Li Xue-Song. Applications of graphene in anti-corrosion of metal surface. Acta Physica Sinica, 2021, 70(9): 098102. doi: 10.7498/aps.70.20210349
    [4] Jiang Xiao-Wei, Wu Hua. Metamaterial absorber with controllable absorption wavelength and absorption efficiency. Acta Physica Sinica, 2021, 70(2): 027804. doi: 10.7498/aps.70.20201173
    [5] Zhao Cheng-Xiang, Qie Yuan, Yu Yao, Ma Rong-Rong, Qin Jun-Fei, Liu Yan. Enhanced optical absorption of graphene by plasmon. Acta Physica Sinica, 2020, 69(6): 067801. doi: 10.7498/aps.69.20191645
    [6] Wu Chen-Chen, Guo Xiang-Dong, Hu Hai, Yang Xiao-Xia, Dai Qing. Graphene plasmon enhanced infrared spectroscopy. Acta Physica Sinica, 2019, 68(14): 148103. doi: 10.7498/aps.68.20190903
    [7] Wang Xiao, Huang Sheng-Xiang, Luo Heng, Deng Lian-Wen, Wu Hao, Xu Yun-Chao, He Jun, He Long-Hui. First-principles study of electronic structure and optical properties of nickel-doped multilayer graphene. Acta Physica Sinica, 2019, 68(18): 187301. doi: 10.7498/aps.68.20190523
    [8] Chen Hao, Zhang Xiao-Xia, Wang Hong, Ji Yue-Hua. Near-infrared absorption of graphene-metal nanostructure based on magnetic polaritons. Acta Physica Sinica, 2018, 67(11): 118101. doi: 10.7498/aps.67.20180196
    [9] Gao Jian, Sang Tian, Li Jun-Lang, Wang La. Double-channel absorption enhancement of graphene using narrow groove metal grating. Acta Physica Sinica, 2018, 67(18): 184210. doi: 10.7498/aps.67.20180848
    [10] Wang Xiao-Fa, Zhang Jun-Hong, Gao Zi-Ye, Xia Guang-Qiong, Wu Zheng-Mao. Nanosecond mode-locked Tm-doped fiber laser based on graphene saturable absorber. Acta Physica Sinica, 2017, 66(11): 114209. doi: 10.7498/aps.66.114209
    [11] Xu Jie, Zhou Li, Huang Zhi-Xiang, Wu Xian-Liang. Study on the absorbing properties of critically coupled resonator with graphene. Acta Physica Sinica, 2015, 64(23): 238103. doi: 10.7498/aps.64.238103
    [12] Xie Ling-Yun, Xiao Wen-Bo, Huang Guo-Qing, Hu Ai-Rong, Liu Jiang-Tao. Terahertz absorption of graphene enhanced by one-dimensional photonic crystal. Acta Physica Sinica, 2014, 63(5): 057803. doi: 10.7498/aps.63.057803
    [13] Yu Hai-Ling, Zhu Jia-Qi, Cao Wen-Xin, Han Jie-Cai. Process in preparation of metal-catalyzed graphene. Acta Physica Sinica, 2013, 62(2): 028201. doi: 10.7498/aps.62.028201
    [14] Wang Hong-Pei, Wang Guang-Long, Ni Hai-Qiao, Xu Ying-Qiang, Niu Zhi-Chuan, Gao Feng-Qi. Quantum-dot gated field effect enhanced single-photon detectors. Acta Physica Sinica, 2013, 62(19): 194205. doi: 10.7498/aps.62.194205
    [15] Feng De-Jun, Hang Wen-Yu, Jiang Shou-Zhen, Ji Wei, Jia Dong-Fang. Few-layer graphene membrane as an ultrafast mode-locker in erbium-doped fiber laser. Acta Physica Sinica, 2013, 62(5): 054202. doi: 10.7498/aps.62.054202
    [16] Chen Ying-Liang, Feng Xiao-Bo, Hou De-Dong. Optical absorptions in monolayer and bilayer graphene. Acta Physica Sinica, 2013, 62(18): 187301. doi: 10.7498/aps.62.187301
    [17] Yan Feng-Ping, Liu Peng, Tao Pei-Lin, Li Qi, Peng Wan-Jing, Feng Ting, Tan Si-Yu. Analysis of absorption property for pumping laser with double cladding rare earth doped fiber. Acta Physica Sinica, 2012, 61(16): 164203. doi: 10.7498/aps.61.164203
    [18] Bao Shi, Luo Chun-Rong, Zhang Yan-Ping, Zhao Xiao-Peng. Broadband metamaterial absorber based on dendritic structure. Acta Physica Sinica, 2010, 59(5): 3187-3191. doi: 10.7498/aps.59.3187
    [19] Liu Min-Min, Zhang Guo-Ping, Zou Ming. Electromagnetic theory of enhanced diffraction for a binary metallic grating. Acta Physica Sinica, 2006, 55(9): 4608-4612. doi: 10.7498/aps.55.4608
    [20] Tan Chun-Lei, Yi Yong-Xiang, Wang Gu-Peng. . Acta Physica Sinica, 2002, 51(5): 1063-1067. doi: 10.7498/aps.51.1063
Metrics
  • Abstract views:  10396
  • PDF Downloads:  126
  • Cited By: 0
Publishing process
  • Received Date:  11 December 2018
  • Accepted Date:  03 April 2019
  • Available Online:  01 July 2019
  • Published Online:  05 July 2019

/

返回文章
返回