Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Quantum calculation of the influence of trivalent praseodymium ions doping on the magneto-optical properties of terbium gallium garnet crystal

Cai Wei Xu You-An Yang Zhi-Yong

Citation:

Quantum calculation of the influence of trivalent praseodymium ions doping on the magneto-optical properties of terbium gallium garnet crystal

Cai Wei, Xu You-An, Yang Zhi-Yong
PDF
HTML
Get Citation
  • Compared with those materials with superior magneto-optical properties, such as YIG, Ce:YIG and Ba3Tb(PO4)3, pure terbium gallium garnet (TGG) crystal has comparative low Verdet constant and cannot meet the requirements of some high-power devices. Doping Pr3+ ions in TGG crystal can remarkably enhance its magneto-optical properties and expand its application scope, but there are still lack of systematic theoretical calculations to clarify this phenomenon. Based on the quantum theory, this paper presents the influence of doping Pr3+ ions on the magneto-optical performance and the corresponding quantitative calculation results. Firstly, taking various effects on Tb3+ ions and Pr3+ ions in the crystal into consideration, the Hamiltonian is modeled and discussed in detail. The secular equations are solved by applying the perturbation method, and then the energy level shifts and wave functions of the Tb3+ ions and Pr3+ ions are worked out, where the spin-orbit coupling, crystal field, effective field and super-exchange interaction between the two types of ions are considered. Furthermore, the transition dipole moments of Tb3+ ions and Pr3+ ions from the 4f ground state to higher level 5d, together with the distribution probability at each energy level and the average magnetic moment, are resolved. Finally, the Verdet constants and magnetic susceptibilities of pure TGG crystal and Pr:TGG crystal are calculated and compared with each other. Moreover, the relationship between the Verdet constant of Pr:TGG crystal and the Pr3+-doping amount is derived. The results show that the Faraday rotation angle caused by Pr3+ ions is larger than that of Tb3+ ions, meanwhile, the strong super-exchange between Tb3+ ions and Pr3+ ions causes further splitting of the 4f energy level, resulting in a significant increasement of the Verdet constant of the Pr:TGG crystal, which reaches 313.4 rad/m·T, 191.2 rad/m·T and 60.4 rad/m·T at the wavelengths of 532 nm, 632.8 nm and 1064 nm, respectively. In addition, doping Pr3+ ions inside the crystal improves the internal effective magnetic moment, which can reach 9.92 μB at 10 K. At the same time, the magnetic susceptibility increases, while the temperature interdependency decreases. The linear relationship between the reciprocal of magnetic susceptibility and temperature reduces from 4.41/K to 3.92/K. The Verdet constant of the Pr:TGG crystal is linear with the amount of Pr3+ ions doping. When the contents of Tb3+ ions and Pr3+ ions inside the crystal are equal, the maximum value is reached, which is about 2913.4 rad/m·T. The calculation results in this paper are in good agreement with the existing experimental data.
      Corresponding author: Xu You-An, 408091240@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61505254).
    [1]

    Tian Y, Tan B Z, Yang J, Zhang Y, Gu S H 2015 Chin. Phys. B 24 063302Google Scholar

    [2]

    Kaminskii A A, Eichler H J, Reiche P, Uecker R 2005 Laser Phys. Lett. 2 489Google Scholar

    [3]

    Zhang F, Tian Y, Yi Z, Gu S H 2016 Chin. Phys. B 25 094206Google Scholar

    [4]

    李长胜 2015 物理学报 64 047801Google Scholar

    Li C S 2015 Acta Phys. Sin. 64 047801Google Scholar

    [5]

    Yasuhara R, Tokita S, Kawanaka J, Kawashima T 2007 Opt. Express 15 11264

    [6]

    Yasuhara R, Furuse H 2013 Opt. Lett. 38 1751Google Scholar

    [7]

    Yasuhara R, Tokita S, Kawanaka J 2007 Rev. Laser Eng. 35 806Google Scholar

    [8]

    刘琳, 俞育德 1985 人工晶体学报 1 27

    Liu L, Yu Y D 1985 J. Synth. Cryst. 1 27

    [9]

    Chani V I, Takeda H, Fukuda T 1999 J. Alloy. Compd. 60 212

    [10]

    陈建斌, 林羽, 李国辉, 陈建珊, 滕硕, 姚元根 2014 人工晶体学报 43 8

    Chen J B, Lin Y, Li G H, Chen J S, Teng S, Yao Y G 2014 J. Synth. Cryst. 43 8

    [11]

    徐嘉林, 董玮利, 彭海益, 刘旺, 金维召, 林海, 李春 2015 长春理工大学学报 3 20Google Scholar

    Xu J L, Dong W L, Peng H Y, Liu W, Jin W Z, Lin H, Li C 2015 J. Changchun Univ. Technol. 3 20Google Scholar

    [12]

    龙勇, 徐扬, 石自彬, 丁雨憧, 王佳, 付昌禄 2015 压电与声光 37 277Google Scholar

    Long Y, Xu Y, Shi Z B, Ding Y T, Wang J, Fu C L 2015 Piezoelectric and Sound and Light 37 277Google Scholar

    [13]

    裴广庆, 张艳, 柳祝平 2015 人工晶体学报 44 885Google Scholar

    Pei G Q, Zhang Y, Liu Z P 2015 J. Synth. Cryst. 44 885Google Scholar

    [14]

    龙勇, 石自彬, 丁雨憧 2016 压电与声光 38 433

    Long Y, Shi Z B, Ding Y D 2016 Piezoelectr. Acoustoopt. 38 433

    [15]

    Chen Z, Hang Y, Yang L, Wang J, Wang X Y, Zhang P X, Hong J Q, Shi C J, Wang Y Q 2015 Mater. Lett. 145 171Google Scholar

    [16]

    Chen Z, Yang L, Wang X Y, Hang Y 2016 Opt. Mater. 62 475Google Scholar

    [17]

    Zhu N F, Li Y X, Yu X F 2008 Mater. Lett. 62 2355Google Scholar

    [18]

    Sugar J 1965 JOSA 55 1058Google Scholar

    [19]

    杨翠红 2004 硕士学位论文(扬州: 扬州大学)

    Yang C H 2004 M. S. Thesis (Yangzhou: Yangzhou University) (in Chinese)

    [20]

    Suits J 1972 IEEE Trans. Magn. 8 95Google Scholar

    [21]

    Shen Y R 1964 Phys. Rev. B 133 A511Google Scholar

    [22]

    蔡伟, 邢俊辉, 杨志勇 2017 物理学报 66 187801Google Scholar

    Cai W, Xing J H, Yang Z Y 2017 Acta Phys. Sin. 66 187801Google Scholar

    [23]

    Villaverde A B, Donatti D A, Bozinis D G 1978 J. Phys. C: Solid State Phys. 11 L495Google Scholar

    [24]

    Kiyoshi S 2010 Crystal Growth & Design 10 3466Google Scholar

    [25]

    Löw U, Zvyagin S, Ozerov M, Schaufuss U, Kataev V, Wolf B, Lüthi B 2013 Eur. Phys. J. B 86 87Google Scholar

  • 图 1  维尔德常数的波长特性

    Figure 1.  Wavelength characteristics of the Verdet constant.

    图 2  磁化率的温度特性

    Figure 2.  Temperature characteristics of the magnetic susceptibility.

    图 3  维尔德常数随Pr3+离子含量(y)的变化情况

    Figure 3.  The variation of Verdet constant with Pr3+ ions content (y).

    表 1  作用于Tb3+, Pr3+离子的晶场参数(cm–1)

    Table 1.  Crystal field parameters acting on Tb3+ and Pr3+ ions (cm–1).

    能级${B_{2,0}}$${B_{2,2}}$${B_{4,0}}$${B_{4,2}}$${B_{4,4}}$${B_{6,0}}$${B_{6,2}}$${B_{6,4}}$${B_{6,6}}$
    Tb3+4f–129.9271.2–2558.8296.21121.6682.3–157.21048–4.7
    5d–30631180–139845729995412
    Pr3+4f–334144–26302521126932–2071622–199
    5d–41622150–128877796308425
    DownLoad: CSV

    表 2  晶场及自旋轨道作用下的能级位移(cm–1)

    Table 2.  Energy level shift under the action of crystal field and spin orbit (cm–1).

    12345678
    Tb3+Ea141.649.784.989.2267.5272303.2310.5
    Eb1–863.2–336.4–56.3784.61446.71996.2
    Pr3+Ea1–7.4–8.955452.8512.4549.9567.1722.4
    Eb1–1767.6–542.91115.91198.22349.5
    DownLoad: CSV

    表 3  有效场作用下的能级分裂(cm–1)

    Table 3.  Energy level splitting under the action of effective field (cm–1).

    1234
    Tb3+(± 2.342$\mp\; 0.9516 \nu \chi $)(± 0.463$\mp\; 0.1422 \nu \chi $)(± 0.897$\mp\; 0.3641 \nu \chi $)(± 1.499$\mp \;0.6561 \nu \chi $)
    Pr3+(± 1.641$\mp \;0.8244 \nu \chi $)(± 0.423$\mp\; 0.0893 \nu \chi $)(± 3.302$\mp\; 0.1176 \nu \chi $)
    DownLoad: CSV

    表 4  超交换作用下的能级位移(cm–1)

    Table 4.  Energy level shift under the action of super-exchange interaction (cm–1).

    12345678
    Tb3+Ea3–201.3–152.3–96.4–3.282.4141168.3210
    Eb2–499.1–112.778.8236.7774.11135.8
    Pr3+Ea3–262.1–194.3–32.456.961.5176.5211.7387.9
    Eb2–844.1–10.3743.5882.41178.3
    DownLoad: CSV

    表 5  不同波长下的维尔德常数V (${\rm{rad/m}} \cdot {\rm{T}}$)

    Table 5.  Verdet constant at different wavelengths (${\rm{rad/m}} \cdot {\rm{T}}$).

    波长λ/nm457.9532632.883010641300
    TGGVc290.1179.4122.251.931.818.5
    Ve305.7190134.46140.220
    5%Pr:TGGVc421.8312.5190.2108.859.745.9
    Ve437324.5200.1121.468.749.2
    注: Vc为本文维尔德常数的计算值, Ve为实验值[16,23,24].
    DownLoad: CSV

    表 6  不同Pr3+离子含量(y)下的维尔德常数V(${\rm{rad/m}} \cdot {\rm{T}}$)

    Table 6.  Verdet constant under different Pr3+ ions content (${\rm{rad/m}} \cdot {\rm{T}}$).

    λ/nm
    y
    00.07311.522.9273
    532179.4312.52002.12913.42021.4367.9237.7
    632.8122.2190.21099.81588.61112.9231161.5
    106431.859.7432.1632.343877.849.4
    DownLoad: CSV

    表 7  不同温度下磁化率的倒数1/χ

    Table 7.  Inverse magnetic susceptibility at different temperatures.

    温度T /K10100150200250300
    TGG1/χc80.3458.4688.3942.81167.81399.5
    1/χe72.2469.3659.2908.91128.71349.6
    5%Pr:TGG1/χc64.3441.2637.7852.41029.31210.5
    1/χe56.4419599.2803.7987.11163.2
    注: 1/χc为本文计算值, 1/χe为实验值[16,25].
    DownLoad: CSV
  • [1]

    Tian Y, Tan B Z, Yang J, Zhang Y, Gu S H 2015 Chin. Phys. B 24 063302Google Scholar

    [2]

    Kaminskii A A, Eichler H J, Reiche P, Uecker R 2005 Laser Phys. Lett. 2 489Google Scholar

    [3]

    Zhang F, Tian Y, Yi Z, Gu S H 2016 Chin. Phys. B 25 094206Google Scholar

    [4]

    李长胜 2015 物理学报 64 047801Google Scholar

    Li C S 2015 Acta Phys. Sin. 64 047801Google Scholar

    [5]

    Yasuhara R, Tokita S, Kawanaka J, Kawashima T 2007 Opt. Express 15 11264

    [6]

    Yasuhara R, Furuse H 2013 Opt. Lett. 38 1751Google Scholar

    [7]

    Yasuhara R, Tokita S, Kawanaka J 2007 Rev. Laser Eng. 35 806Google Scholar

    [8]

    刘琳, 俞育德 1985 人工晶体学报 1 27

    Liu L, Yu Y D 1985 J. Synth. Cryst. 1 27

    [9]

    Chani V I, Takeda H, Fukuda T 1999 J. Alloy. Compd. 60 212

    [10]

    陈建斌, 林羽, 李国辉, 陈建珊, 滕硕, 姚元根 2014 人工晶体学报 43 8

    Chen J B, Lin Y, Li G H, Chen J S, Teng S, Yao Y G 2014 J. Synth. Cryst. 43 8

    [11]

    徐嘉林, 董玮利, 彭海益, 刘旺, 金维召, 林海, 李春 2015 长春理工大学学报 3 20Google Scholar

    Xu J L, Dong W L, Peng H Y, Liu W, Jin W Z, Lin H, Li C 2015 J. Changchun Univ. Technol. 3 20Google Scholar

    [12]

    龙勇, 徐扬, 石自彬, 丁雨憧, 王佳, 付昌禄 2015 压电与声光 37 277Google Scholar

    Long Y, Xu Y, Shi Z B, Ding Y T, Wang J, Fu C L 2015 Piezoelectric and Sound and Light 37 277Google Scholar

    [13]

    裴广庆, 张艳, 柳祝平 2015 人工晶体学报 44 885Google Scholar

    Pei G Q, Zhang Y, Liu Z P 2015 J. Synth. Cryst. 44 885Google Scholar

    [14]

    龙勇, 石自彬, 丁雨憧 2016 压电与声光 38 433

    Long Y, Shi Z B, Ding Y D 2016 Piezoelectr. Acoustoopt. 38 433

    [15]

    Chen Z, Hang Y, Yang L, Wang J, Wang X Y, Zhang P X, Hong J Q, Shi C J, Wang Y Q 2015 Mater. Lett. 145 171Google Scholar

    [16]

    Chen Z, Yang L, Wang X Y, Hang Y 2016 Opt. Mater. 62 475Google Scholar

    [17]

    Zhu N F, Li Y X, Yu X F 2008 Mater. Lett. 62 2355Google Scholar

    [18]

    Sugar J 1965 JOSA 55 1058Google Scholar

    [19]

    杨翠红 2004 硕士学位论文(扬州: 扬州大学)

    Yang C H 2004 M. S. Thesis (Yangzhou: Yangzhou University) (in Chinese)

    [20]

    Suits J 1972 IEEE Trans. Magn. 8 95Google Scholar

    [21]

    Shen Y R 1964 Phys. Rev. B 133 A511Google Scholar

    [22]

    蔡伟, 邢俊辉, 杨志勇 2017 物理学报 66 187801Google Scholar

    Cai W, Xing J H, Yang Z Y 2017 Acta Phys. Sin. 66 187801Google Scholar

    [23]

    Villaverde A B, Donatti D A, Bozinis D G 1978 J. Phys. C: Solid State Phys. 11 L495Google Scholar

    [24]

    Kiyoshi S 2010 Crystal Growth & Design 10 3466Google Scholar

    [25]

    Löw U, Zvyagin S, Ozerov M, Schaufuss U, Kataev V, Wolf B, Lüthi B 2013 Eur. Phys. J. B 86 87Google Scholar

  • [1] Wu Jing, Pan Chun-Yu. Research on inductive neuron model and its dynamic characteristics. Acta Physica Sinica, 2022, 71(4): 048701. doi: 10.7498/aps.71.20211626
    [2] Research on Inductive Neuron Model and its Dynamic Characteristics. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211626
    [3] Dong Da-Xing, Liu You-Wen, Fu Yang-Yang, Fei Yue. Enhancement of Faraday rotation of black phosphorus by extraordinary optical transmission of the metal grating. Acta Physica Sinica, 2020, 69(23): 237802. doi: 10.7498/aps.69.20201056
    [4] Cai Wei, Xu You-An, Yang Zhi-Yong, Miao Li-Yao, Zhao Zhong-Hao. Discussion on Verdet constant solution model of paramagnetic magneto-optical materials. Acta Physica Sinica, 2019, 68(20): 207802. doi: 10.7498/aps.68.20190845
    [5] Shang Ya-Xuan, Ma Jian, Shi Ping, Qian Xuan, Li Wei, Ji Yang. Measurement and improvement of rubidium spin noise spectroscopy. Acta Physica Sinica, 2018, 67(8): 087201. doi: 10.7498/aps.67.20180098
    [6] Shi Ping, Ma Jian, Qian Xuan, Ji Yang, Li Wei. Signal-to-noise ratio of spin noise spectroscopy in rubidium vapor. Acta Physica Sinica, 2017, 66(1): 017201. doi: 10.7498/aps.66.017201
    [7] Cai Wei, Xing Jun-Hui, Yang Zhi-Yong. Contributions to Verdet constant of magneto-optical materials. Acta Physica Sinica, 2017, 66(18): 187801. doi: 10.7498/aps.66.187801
    [8] Cheng Tai-Min, Ge Chong-Yuan, Sun Shu-Sheng, Jia Wei-Ye, Li Lin, Zhu Lin, Ma Yan-Ming. Properties and order-disorder competition of spin-1/2 XY model in the ferrimagnetic diamond chain. Acta Physica Sinica, 2012, 61(18): 187502. doi: 10.7498/aps.61.187502
    [9] Men Fu-Dian, Wang Hai-Tang, He Xiao-Gang. The stability and paramagnetism of Fermi gas in a strong magnetic field. Acta Physica Sinica, 2012, 61(10): 100503. doi: 10.7498/aps.61.100503
    [10] Cao Ming-Tao, Qiu Shu-Wei, Guo Wen-Ge, Liu Tao, Han Liang, Liu Hao, Zhang Pei, Zhang Shou-Gang, Gao Hong, Li Fu-Li. Optical polarization rotation in a rubidium vapor. Acta Physica Sinica, 2012, 61(16): 164208. doi: 10.7498/aps.61.164208
    [11] Yan Wei, Lu Wen, Shi Jian-Kang, Ren Jian-Qi, Wang Rui. Eliminating the influence of Faraday rotation on passive microwave remote sensing from space. Acta Physica Sinica, 2011, 60(9): 099401. doi: 10.7498/aps.60.099401
    [12] Zhou Liang, Zhang Jing-Yi. Tunneling radiation of particles with electrical and magnetic charges. Acta Physica Sinica, 2010, 59(6): 4380-4384. doi: 10.7498/aps.59.4380
    [13] Liu Yong, Zhou Rui, Li Jing, Zhang Yue, Xiong Rui, Yin Di, Tang Wu-Feng, Shi Jing. Single crystal growth and magnetic properties of spinel structure and spin ordering compound CaTi2O4. Acta Physica Sinica, 2010, 59(8): 5620-5625. doi: 10.7498/aps.59.5620
    [14] Gu Yong-Jian, Chen Xiao-Dong, Lin Xiu-Min, Xiao Shao-Jun. Implementation of photon Bell-state and GHZ-state analyzers through the Faraday rotation. Acta Physica Sinica, 2010, 59(8): 5251-5255. doi: 10.7498/aps.59.5251
    [15] Zhang Kai-Cheng. Nonequilibrium properties of Sherrington-Kirkpatric spin glass model. Acta Physica Sinica, 2009, 58(8): 5673-5678. doi: 10.7498/aps.58.5673
    [16] Wang Li-Li, Xiong Rui, Wei Wei, Hu Ni, Lin Ying, Zhu Ben-Peng, Tang Wu-Feng, Yu Zu-Xing, Tang Zheng, Shi Jing. Study on the magnetic susceptibility of quasi-one-dimensional spin ladder compounds (Sr1-xCax)14Cu24O41-δ with oxygen deficiency. Acta Physica Sinica, 2008, 57(7): 4334-4340. doi: 10.7498/aps.57.4334
    [17] Zang Xiao-Fei, Li Ju-Ping, Tan Lei. Nonlinear dynamical properties of susceptibility of a spinor Bose-Einstein condensate with dipole-dipole interaction in a double-well potential. Acta Physica Sinica, 2007, 56(8): 4348-4352. doi: 10.7498/aps.56.4348
    [18] Wang Ze-Wen, Jie Wan-Qi. Magnetization and susceptibility of diluted magnetic semiconductor Hg0.89Mn0.11Te. Acta Physica Sinica, 2007, 56(2): 1141-1145. doi: 10.7498/aps.56.1141
    [19] Zhang Jing-Yi, Zhao Zheng. Massive particles’ Hawking radiation via tunneling. Acta Physica Sinica, 2006, 55(7): 3796-3798. doi: 10.7498/aps.55.3796
    [20] Long Yun-Ze, Chen Zhao-Jia, Zhang Zhi-Ming, Wan Mei-Xiang, Zheng Ping, Wang Nan-Lin, He Chao-Hui, Geng Bin, Yang Hai-Liang, Chen Xiao-Hua, Wang Yan-Ping, Li Guo-Zheng. Resistivity and magnetic susceptibility of nanotubular polyaniline doped with protonic acids. Acta Physica Sinica, 2003, 52(1): 175-179. doi: 10.7498/aps.52.175
Metrics
  • Abstract views:  7613
  • PDF Downloads:  73
  • Cited By: 0
Publishing process
  • Received Date:  19 April 2019
  • Accepted Date:  14 May 2019
  • Available Online:  01 July 2019
  • Published Online:  05 July 2019

/

返回文章
返回