搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

顺磁性磁光材料维尔德常数解算模型的讨论

蔡伟 许友安 杨志勇 苗丽瑶 赵钟浩

引用本文:
Citation:

顺磁性磁光材料维尔德常数解算模型的讨论

蔡伟, 许友安, 杨志勇, 苗丽瑶, 赵钟浩

Discussion on Verdet constant solution model of paramagnetic magneto-optical materials

Cai Wei, Xu You-An, Yang Zhi-Yong, Miao Li-Yao, Zhao Zhong-Hao
PDF
HTML
导出引用
  • 对顺磁性材料磁光特性和维尔德常数的研究通常采用量子理论, 但传统的量子理论仅考虑了电子跃迁偶极矩的影响, 难以对维尔德常数进行全面系统的描述. 本文在考虑跃迁偶极矩影响的基础上, 以受迫振动对电偶极矩修正的方式计入外磁场与光电场对电子运动的影响. 首先从微观层面分析了顺磁性材料磁光效应及维尔德常数的内在机理, 而后通过经典电子动力学理论和量子理论分别分析了电子的能级跃迁和外场作用下非跃迁位移对电偶极矩的贡献, 进而推导得到顺磁性材料的极化率, 构建了维尔德常数的解算模型. 以典型顺磁性磁光材料铽镓石榴石为例, 量子计算了Tb3+离子在自旋-轨道耦合、晶场及有效场作用下的能级及波函数, 最终分别定量求解得到传统量子理论和本文方法下的维尔德常数. 对比分析发现: 相比传统量子理论, 利用本文方法计算得到的结果与实验数据更为吻合, 具有一定的优越性.
    The Verdet constant is one of the key parameters to characterize the material magneto-optical properties. The quantum theory is usually used to study magneto-optical properties and calculate the Verdet constant of paramagnetic material. However, the traditional quantum theory only takes into account the influence of the electron transition dipole moments caused by the particle property of light, which therefore cannot formulate the Verdet constant of magneto-optical material accurately. In view of the shortcomings of the existing theory, in this paper we propose is a wave-transition model of the Verdet constant. Due to the special wave-particle duality of light, the contribution of the non-transition dipole moment to the Verdet constant, caused by the electric field of light wave, should not be ignored. According to the basic theory of magneto-optical effect, in this paper we first explore the intrinsic mechanism of the paramagnetic material’s Verdet constant at a microscopic level and analyze the deficiency of traditional quantum theory. Furthermore, the classical electronic dynamic theory and quantum theory are used to reveal the contribution of volatility and transition of the light to the electric dipole moment. The density operator and statistical algorithm are introduced to derive the polarizability tensor of the paramagnetic magneto-optical material, thus obtaining the Verdet constant expression of the paramagnetic magneto-optical material, from which the Verdet constant is formulated. Taking the paramagnetic magneto-optical material TGG for example, the splitting energy levels and wave function of Tb3+ ions in the spin-orbit coupling, crystal field and effective field are calculated by the quantum method, and finally the Verdet constants under the traditional quantum theory and the volatility transition contribution model are obtained quantitatively. The comparative analysis shows that the results calculated by the wave-transition contribution model are more consistent with the experimental data and more accurate than the results calculated through the traditional quantum theory. The idea and method put forward in this paper will provide reference for further exploring the magneto-optical effect mechanism of paramagnetic magneto-optical materials.
      通信作者: 许友安, 408091240@qq.com
    • 基金项目: 国家自然科学基金(批准号: 61505254)资助的课题
      Corresponding author: Xu You-An, 408091240@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61505254)
    [1]

    Zhang F, Tian Y, Yi Z, Gu S H 2016 Chin. Phys. B 25 094206Google Scholar

    [2]

    Tian Y, Tan B Z, Yang J, Zhang Y, Gu S H 2015 Chin. Phys. B 24 063302Google Scholar

    [3]

    Yasuhara R, Furuse H 2013 Opt. Lett. 38 1751Google Scholar

    [4]

    李长胜 2015 物理学报 64 047801Google Scholar

    Li C S 2015 Acta Phys. Sin. 64 047801Google Scholar

    [5]

    Becquerel H 1897 J. Phys. Theor. Appl. 6 681

    [6]

    刘公强, 龚挺 1985 上海交通大学学报 19 81

    Liu G Q, Gong T 1985 J. Shanghai JiaoTong Univ. 19 81

    [7]

    刘公强, 乐志强, 沈德芳 2001 磁光学(上海: 科学技术出版社) 第30—34页

    Liu G Q, Le Z Q, Shen D F 2001 Magnetooptics (Shanghai: Science and Technology Press) pp30–34 (in Chinese)

    [8]

    蔡伟, 邢俊辉, 杨志勇 2017 物理学报 66 187801Google Scholar

    Cai W, Xing J H, Yang Z Y 2017 Acta Phys. Sin. 66 187801Google Scholar

    [9]

    van Vleck J H, Hebb M H 1934 Phys. Rev. 46 17Google Scholar

    [10]

    Suits J 1972 IEEE Trans. Mag. 8 95Google Scholar

    [11]

    刘公强, 黄燕萍 1988 物理学报 37 1626Google Scholar

    Liu G Q, Huang Y P 1988 Acta Phys. Sin. 37 1626Google Scholar

    [12]

    Scott G B, Lacklison D 1976 IEEE Trans. Mag. 12 292Google Scholar

    [13]

    Slezák O, Yasuhara R, Lucianetti A, Mocek T 2016 Opt. Mater. Express 6 3683Google Scholar

    [14]

    Taskeya H 2017 Int. J. Electromagn. Appl. 7 17

    [15]

    Wittekoek S, Popma T J A, Robertson J M, Bongers P F 1975 Phys. Rev. B 12 2777Google Scholar

    [16]

    Zhu N F, Li Y X, Yu X F 2008 Mater. Lett. 62 2355Google Scholar

    [17]

    Vasyliev V, Villora E G, Nakamura M, Sugahara Y, Shimamura K 2012 Opt. Express 20 14460Google Scholar

    [18]

    Löw U, Zvyagin S, Ozerov M, Schaufuss U, Kataev V, Wolf B, Lüthi B 2013 Eur. Phys. J. B 86 87Google Scholar

    [19]

    Chen Z, Yang L, Wang X Y, Hang Y 2016 Opt. Mater. 62 475Google Scholar

    [20]

    Villaverde A B, Donatti D A, Bozinis D G 1978 J. Phys. C: Solid State Phys. 11 L495Google Scholar

    [21]

    Kaminskii A A, Eichler H J, Reiche P, Uecker R 2005 Laser Phys. Lett. 2 489Google Scholar

    [22]

    Raja M Y A, Allen D, Sisk W 1995 Appl. Phys. Lett. 67 2123Google Scholar

  • 图 1  顺磁性磁光材料中的能级跃迁

    Fig. 1.  Energy level transition in paramagnetic magneto-optical materials.

    图 2  电子运动及受力分析

    Fig. 2.  Electronic motion and force analysis.

    图 3  总电偶极矩

    Fig. 3.  Total electric dipole moment.

    图 4  Tb3+离子的能级分裂过程

    Fig. 4.  Energy level splitting process of Tb3+ ions.

    图 5  维尔德常数随波长变化情况

    Fig. 5.  Verdet constant varies with wavelength.

    表 1  晶场及自旋轨道作用下的能级位移(单位为cm–1)

    Table 1.  Energy level shift under the action of crystal field and spin orbit (in cm–1).

    12345678
    Tb3+Em141.649.784.989.2267.5272303.2310.5
    En1–863.2–336.4–56.3784.61446.71996.2
    下载: 导出CSV

    表 2  有效场作用下的能级分裂(单位为cm–1)

    Table 2.  Energy level splitting under the action of effective field (in cm–1).

    1234
    Tb3+($ \pm 2.342 \mp 0.9516\nu \chi $)($ \pm 0.46 \mp 0.1422\nu \chi $)($ \pm 0.897 \mp 0.3641\nu \chi $)($ \pm 1.49 \mp 0.6561\nu \chi $)
    下载: 导出CSV

    表 3  不同理论下的维尔德常数(单位为${\rm{rad/(m}} \cdot {\rm{T)}}$)

    Table 3.  Verdet constant under different theories (in ${\rm{rad/(m}} \cdot {\rm{T)}}$).

    λ/nm457.9532632.883010641300
    Ve–305.7–190–134.4–61–40.2–20
    Vt–351.9–236.2–157.8–83.2–50.3–32.9
    Vw-t–314.6–198.7–144.3–68.9–43.7–23.1
    注: Vt为Van Vleck-Hebb传统量子理论的计算值, Vw-t为本文方法的计算值, Ve为实验数据[1922].
    下载: 导出CSV
  • [1]

    Zhang F, Tian Y, Yi Z, Gu S H 2016 Chin. Phys. B 25 094206Google Scholar

    [2]

    Tian Y, Tan B Z, Yang J, Zhang Y, Gu S H 2015 Chin. Phys. B 24 063302Google Scholar

    [3]

    Yasuhara R, Furuse H 2013 Opt. Lett. 38 1751Google Scholar

    [4]

    李长胜 2015 物理学报 64 047801Google Scholar

    Li C S 2015 Acta Phys. Sin. 64 047801Google Scholar

    [5]

    Becquerel H 1897 J. Phys. Theor. Appl. 6 681

    [6]

    刘公强, 龚挺 1985 上海交通大学学报 19 81

    Liu G Q, Gong T 1985 J. Shanghai JiaoTong Univ. 19 81

    [7]

    刘公强, 乐志强, 沈德芳 2001 磁光学(上海: 科学技术出版社) 第30—34页

    Liu G Q, Le Z Q, Shen D F 2001 Magnetooptics (Shanghai: Science and Technology Press) pp30–34 (in Chinese)

    [8]

    蔡伟, 邢俊辉, 杨志勇 2017 物理学报 66 187801Google Scholar

    Cai W, Xing J H, Yang Z Y 2017 Acta Phys. Sin. 66 187801Google Scholar

    [9]

    van Vleck J H, Hebb M H 1934 Phys. Rev. 46 17Google Scholar

    [10]

    Suits J 1972 IEEE Trans. Mag. 8 95Google Scholar

    [11]

    刘公强, 黄燕萍 1988 物理学报 37 1626Google Scholar

    Liu G Q, Huang Y P 1988 Acta Phys. Sin. 37 1626Google Scholar

    [12]

    Scott G B, Lacklison D 1976 IEEE Trans. Mag. 12 292Google Scholar

    [13]

    Slezák O, Yasuhara R, Lucianetti A, Mocek T 2016 Opt. Mater. Express 6 3683Google Scholar

    [14]

    Taskeya H 2017 Int. J. Electromagn. Appl. 7 17

    [15]

    Wittekoek S, Popma T J A, Robertson J M, Bongers P F 1975 Phys. Rev. B 12 2777Google Scholar

    [16]

    Zhu N F, Li Y X, Yu X F 2008 Mater. Lett. 62 2355Google Scholar

    [17]

    Vasyliev V, Villora E G, Nakamura M, Sugahara Y, Shimamura K 2012 Opt. Express 20 14460Google Scholar

    [18]

    Löw U, Zvyagin S, Ozerov M, Schaufuss U, Kataev V, Wolf B, Lüthi B 2013 Eur. Phys. J. B 86 87Google Scholar

    [19]

    Chen Z, Yang L, Wang X Y, Hang Y 2016 Opt. Mater. 62 475Google Scholar

    [20]

    Villaverde A B, Donatti D A, Bozinis D G 1978 J. Phys. C: Solid State Phys. 11 L495Google Scholar

    [21]

    Kaminskii A A, Eichler H J, Reiche P, Uecker R 2005 Laser Phys. Lett. 2 489Google Scholar

    [22]

    Raja M Y A, Allen D, Sisk W 1995 Appl. Phys. Lett. 67 2123Google Scholar

  • [1] 王霞, 贾方石, 姚科, 颜君, 李冀光, 吴勇, 王建国. 类铝离子钟跃迁能级的超精细结构常数和朗德g因子. 物理学报, 2023, 72(22): 223101. doi: 10.7498/aps.72.20230940
    [2] 焦月春, 白景旭, 宋蓉, 韩小萱, 赵建明. 超冷(36D5/2+6S1/2)里德伯分子的制备及其电偶极矩的测量. 物理学报, 2023, 72(3): 033202. doi: 10.7498/aps.72.20221865
    [3] 朱宏钢, 付明安, 任闯, 高云, 黄忠兵. 钾掺杂三(二苯甲酰甲基)铁的超顺磁性. 物理学报, 2022, 71(8): 087501. doi: 10.7498/aps.71.20212128
    [4] 孟举, 何贞岑, 颜君, 吴泽清, 姚科, 李冀光, 吴勇, 王建国. 电四极跃迁对电子束离子阱等离子体中离子能级布居的影响. 物理学报, 2022, 71(19): 195201. doi: 10.7498/aps.71.20220489
    [5] 郑卫民, 黄海北, 李素梅, 丛伟艳, 王爱芳, 李斌, 宋迎新. 掺杂在GaAs材料中Be受主能级之间的跃迁. 物理学报, 2019, 68(18): 187104. doi: 10.7498/aps.68.20190254
    [6] 娄冰琼, 李芳, 王沛妍, 王黎明, 唐永波. 钫原子磁偶极超精细结构常数及其同位素的磁偶极矩的理论计算. 物理学报, 2019, 68(9): 093101. doi: 10.7498/aps.68.20190113
    [7] 蔡伟, 许友安, 杨志勇. 三价镨离子掺杂对铽镓石榴石晶体磁光性能影响的量子计算. 物理学报, 2019, 68(13): 137801. doi: 10.7498/aps.68.20190576
    [8] 李文宇, 霍格, 黄岩, 董丽娟, 卢学刚. 空心Fe3O4纳米微球的制备及超顺磁性. 物理学报, 2018, 67(17): 177501. doi: 10.7498/aps.67.20180579
    [9] 刘恩华, 陈钊, 温晓莉, 陈长乐. 顺磁性La2/3Sr1/3MnO3层对Bi0.8Ba0.2FeO3薄膜多铁性能的影响. 物理学报, 2016, 65(11): 117701. doi: 10.7498/aps.65.117701
    [10] 门福殿, 王海堂, 何晓刚. 强磁场中Fermi气体的稳定性及顺磁性. 物理学报, 2012, 61(10): 100503. doi: 10.7498/aps.61.100503
    [11] 王锋, 王月燕, 黄伟伟, 张小婷, 李珊瑜. 固相反应法制备的CoxZn1-xO磁性能的研究. 物理学报, 2012, 61(15): 157503. doi: 10.7498/aps.61.157503
    [12] 李昌勇, 张临杰, 赵建明, 贾锁堂. 铯原子里德堡态Stark能量及电偶极矩的测量和理论计算. 物理学报, 2012, 61(16): 163202. doi: 10.7498/aps.61.163202
    [13] 陈达鑫, 陈志峰, 徐初东, 赖天树. 铁磁薄膜中圆偏振光感应的瞬态磁光Kerr峰的物理起源. 物理学报, 2010, 59(10): 7362-7367. doi: 10.7498/aps.59.7362
    [14] 刘学超, 施尔畏, 宋力昕, 张华伟, 陈之战. 固相反应法制备Co掺杂ZnO的磁性和光学性能研究. 物理学报, 2006, 55(5): 2557-2561. doi: 10.7498/aps.55.2557
    [15] 周青春. 理想腔中具有正交偶极矩的级联型三能级原子发射谱. 物理学报, 2006, 55(9): 4618-4623. doi: 10.7498/aps.55.4618
    [16] 沈 韩, 许 华, 陈 敏, 李景德. 超高介电常数非铁电单晶. 物理学报, 2004, 53(5): 1529-1533. doi: 10.7498/aps.53.1529
    [17] 方达渭, 张 艺, 钟建伟, 张 森. Yb原子高激发能级的跃迁特性. 物理学报, 1999, 48(4): 596-602. doi: 10.7498/aps.48.596
    [18] 许培英, 盛冬宁, 陆怀先. 磁性液体的介电特性. 物理学报, 1988, 37(7): 1192-1196. doi: 10.7498/aps.37.1192
    [19] 刘公强, 黄燕萍. 顺磁性物质中法拉第磁光效应及其温度特性的量子理论. 物理学报, 1988, 37(10): 1626-1632. doi: 10.7498/aps.37.1626
    [20] 刘鸿举, 赵哲英, 施仲坚. 碘酸锂晶体全部电弹常数的测量. 物理学报, 1981, 30(3): 297-305. doi: 10.7498/aps.30.297
计量
  • 文章访问数:  10800
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-30
  • 修回日期:  2019-08-22
  • 上网日期:  2019-10-01
  • 刊出日期:  2019-10-20

/

返回文章
返回