搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钾掺杂三(二苯甲酰甲基)铁的超顺磁性

朱宏钢 付明安 任闯 高云 黄忠兵

引用本文:
Citation:

钾掺杂三(二苯甲酰甲基)铁的超顺磁性

朱宏钢, 付明安, 任闯, 高云, 黄忠兵

Superparamagnetism of potassium-doped tris(diphenacyl) iron

Zhu Hong-Gang, Fu Ming-An, Ren Chuang, Gao Yun, Huang Zhong-Bing
PDF
HTML
导出引用
  • 本研究通过高真空退火法制备了钾掺杂三(二苯甲酰甲基)铁分子晶体的粉末样品. X-射线衍射测试结果表明, 合成样品与纯三(二苯甲酰甲基)铁的晶体结构明显不同, 平均晶粒尺寸约为20.5 nm. 直流磁化率和交流磁化率的测试结果表明, 合成的样品具有阻塞温度(TB)约为8.0 K的超顺磁性, 这与纯有机物在1.8—300 K整个测试温区的顺磁性存在本质的差异. 根据拉曼光谱测试结果可以确认, 掺杂材料中钾的4 s电子转移到了三(二苯甲酰甲基)铁的苯环上, 引起了拉曼模式的红移, 同时电荷转移也导致苯环上局域磁矩的形成. 本研究工作对碱金属掺杂芳香烃分子晶体的合成和物性研究具有重要的意义, 并为寻找新型的有机铁磁体提供了一条新的途径.
    Synthesis and exploration of intriguing physical properties of alkali-metal-doped aromatic hydrocarbons have been the important research topics in the fields of physics, chemistry and materials science. In this work, a powder sample of potassium-doped tris(diphenacyl) iron molecular crystal is prepared by the high-vacuum annealing method. The X-ray diffraction results show that the crystal structure of the synthesized sample is different from that of pristine tris(diphenacyl)iron. The direct current (DC) magnetic susceptibilitiy shows a pronounced hump structure near 8.0 K, which is distinct from the paramagnetism of pristine material in the whole temperature range of 1.8–300 K. The alternating current (AC) magnetic susceptibility shows that the hump has a significant frequency dependence, which can safely rule out the possibility of antiferromagnetism. The combination of the Vogel-Fulcher law, the Néel-Brown model and the critical slowing down model reveals that the hump originates from superparamagnetism with a blocking temperature (TB) of about 8.0 K. According to the results of Raman spectroscopy, it can be confirmed that the 4s electrons of potassium in the doped material are transferred to the benzene ring of tris(diphenacyl)iron, causing the characteristic Raman modes to be red-shifted and the local magnetic moment to form. Our work is of great significance in exploring alkali-metal-doped aromatic hydrocarbons, and provides a new route for searching organic magnetic materials.
      通信作者: 高云, gaoyun@hubu.edu.cn ; 黄忠兵, huangzb@hubu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11674087, 11574076)资助的课题
      Corresponding author: Gao Yun, gaoyun@hubu.edu.cn ; Huang Zhong-Bing, huangzb@hubu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674087, 11574076)
    [1]

    高云, 王仁树, 邬小林, 程佳, 邓天郭, 闫循旺, 黄忠兵 2016 物理学报 65 077402Google Scholar

    Gao Y, Wang R S, Wu X L, Cheng J, Deng T G, Yan X W, Huang Z B 2016 Acta Phys. Sin. 65 077402Google Scholar

    [2]

    轩书科 2017 物理学报 66 237401Google Scholar

    Xuan S K 2017 Acta Phys. Sin. 66 237401Google Scholar

    [3]

    Zhang J L, Whitehead G F S, Manning T D, Stewart D, Hiley C I, Pitcher M J, Jansat S, Prassides K, Rosseinsky M J 2018 J. Am. Chem. Soc. 140 18162Google Scholar

    [4]

    Mitsuhashi R, Suzuki Y, Yamanari Y, Mitamura H, Kambe T, Ikeda N, Okamoto H, Fujiwara A, Yamaji M, Kawasaki N, Maniwa Y, Kubozono Y 2010 Nature 464 76Google Scholar

    [5]

    Wang X F, Liu R H, Gui Z, Xie Y L, Yan Y J, Ying J J, Luo X G, Chen X H 2012 Nature Commun. 2 507

    [6]

    Xue M Q, Cao T B, Wang D M, Wu Y, Yang H X, Dong X L, He J B, Li F W, Chen G F 2012 Sci. Rep. 2 389Google Scholar

    [7]

    Wang X F, Yan Y J, Gui Z, Liu R H, Ying J J, Luo X G, Chen X H 2011 Phys. Rev. B 84 214523Google Scholar

    [8]

    Takabayashi Y, Menelaou M, Tamura H, Takemori N, Koretsune T, Štefančič A, Klupp G, Buurma C A J, Nomura Y, Arita R, Arčon D, Rosseinsky M J, Prassides K 2017 Nature Chem. 9 635Google Scholar

    [9]

    Štefančič A, Klupp G, Knaflič T, Yufit D S, Tavčar G, Potočnik A, Beeby A, Arčon D 2017 J. Phys. Chem. C 127 14864

    [10]

    Phan Q T N, Heguri S, Tamura H, Nakano T, Nozue Y, Tanigaki K 2016 Phys. Rev. B 93 075130Google Scholar

    [11]

    Fu M A, Wang R S, Yang H, Zhang P Y, Zhang C F, Chen X J, Gao Y, Huang Z B 2021 Carbon 173 587Google Scholar

    [12]

    Wang R S, Gao Y, Huang Z B, Chen X J 2017 arXiv: 1703.06641v1

    [13]

    Liu W H, Lin H, Kang R Z, Zhang Y, Zhu X Y, Wen H H 2017 Phys. Rev. B 96 224501Google Scholar

    [14]

    Wang R S, Cheng J, Wu X L, Yang H, Chen X J, Gao Y, Huang Z B 2018 J. Chem. Phys. 149 144502Google Scholar

    [15]

    Wang R S, Yang H, Cheng J, Wu X L, Fu M A, Chen X J, Gao Y, Huang Z B. 2019 J. Phys. Chem. C 123 19105Google Scholar

    [16]

    Wang R S, Chen L C, Yang H, Fu M A, Cheng J, Wu X L, Gao Y, Huang Z B, Chen X J 2019 Phys. Chem. Chem. Phys. 21 25976Google Scholar

    [17]

    Rostamnejadi A, Salamati H, Kameli P, Ahmadvand H 2009 J. Magn. Magn. Mater. 321 3126Google Scholar

    [18]

    Venkateswarlu B, Krishnan R H, Chelvane J A, Babu P D, Kumar N H 2019 J. Alloy. Compd. 777 373Google Scholar

    [19]

    Shtrikman S, Wohlfarth E P 1918 Phys. Lett. 85A 467

    [20]

    Goya G F, Berquό T S, Fonseca F C 2003 J. Appl. Phys. 94 3520Google Scholar

    [21]

    Dormann J L, Fiorani D, Cherkaoui R, Tronc E, Lucari F, DʹOrazio F, Spinu L, Noguès M, Kachkchi H, Jolivet J P 1999 J. Magn. Magn. Mater. 203 23Google Scholar

    [22]

    Sharma S K, Kumar R, Kumar S, Kumar V V S, Knobel M, Reddy V R, Banerjee A, Singh M 2007 Solid State Commun. 141 203Google Scholar

    [23]

    Jonason K, Mattsson J, Nordblad P 1996 Phys. Rev. B 53 6507Google Scholar

    [24]

    Nam D N H, Jonason K, Nordblad P, Khiem N V, Phuc N X 1999 Phys. Rev. B 59 4189Google Scholar

    [25]

    Typek J, Guskos N, Zolnierkiewicz G, Lendzion-Bielun Z, Pachla A, Narkiewicz U 2018 Eur. Phys. J. Appl. Phys. 83 10402Google Scholar

    [26]

    潘峰, 丁斌峰, 法涛, 成枫锋, 周生强, 姚淑德 2011 物理学报 60 108501Google Scholar

    Pan F, Ding B F, Fa T, Cheng F F, Zhou S Q, Yao S D 2011 Acta Phys. Sin. 60 108501Google Scholar

    [27]

    Carvell J, Ayieta E, Gavrin A, Cheng R H, Shah V R, Sokol P 2010 J. Appl. Phys. 107 103913Google Scholar

    [28]

    Nekoei A R, Vakili M, Hakimi-Tabar M, TayyariS F, Afzali R, Kjaergaard H G 2014 Spectrochim. Acta A 128 272Google Scholar

  • 图 1  DPF的分子结构

    Fig. 1.  The molecular structure of DPF.

    图 2  各阶段实验样品外观图

    Fig. 2.  Appearance of experimental samples at each stage.

    图 3  纯DPF在外磁场20 Oe下的ZFC和FC直流磁化率测试曲线

    Fig. 3.  ZFC and FC DC susceptibility curves of pure DPF under an external magnetic field of 20 Oe.

    图 4  掺杂样品K3DPF-A的PPMS磁性测试结果 (a) K3DPF-A在外磁场20 Oe下的ZFC和FC直流磁化率测试曲线, 插图为M-H曲线; (b) K3DPF-A在不同磁场下的ZFC曲线; (c) K3DPF-A交流磁化率曲线的实部; (d) K3DPF-A交流磁化率曲线的虚部

    Fig. 4.  The PPMS magnetic results of the doped sample K3DPF-A: (a) The ZFC and FC DC susceptibility curves of K3DPF-A under an external magnetic field of 20 Oe. The inset is the M-H curve. (b) ZFC curves of K3DPF-A under different magnetic fields. (c) The real part and (d) the imaginary part of AC magnetic susceptibility for K3DPF-A.

    图 5  掺杂样品K3DPF-B的PPMS磁性测试结果 (a) K3DPF-B在外磁场20 Oe下的ZFC和FC直流磁化率测试曲线; (b) K3DPF-B在1.8 K与300 K下的M-H曲线

    Fig. 5.  The PPMS magnetic results of the doped sample K3DPF-B: (a) The ZFC and FC DC susceptibility curves of K3DPF-B under an external magnetic field of 20 Oe; (b) M-H curves of K3DPF-B at 1.8 and 300 K.

    图 6  暴露20 h后的掺杂样品K3DPF-B在外磁场20 Oe下的ZFC和FC直流磁化率测试曲线

    Fig. 6.  ZFC and FC DC susceptibility curves of the doped sample K3DPF-B after exposure for 20 h under an external magnetic field of 20 Oe.

    图 7  弛豫时间τ与温度Tf的依赖关系

    Fig. 7.  The dependence of relaxation time τ on temperature Tf.

    图 8  纯DPF和275 ℃退火下钾掺杂DPF的XRD图谱

    Fig. 8.  The XRD patterns of pristine and potassium-doped tris(diphenacyl)iron annealed at 275 ℃.

    图 9  纯DPF(顶部)和钾掺杂DPF(底部)的室温拉曼散射光谱

    Fig. 9.  Raman spectra of the pristine DPF (upper) and potassium-doped samples (bottom) collected at room temperature.

    表 1  纯DPF和钾掺杂DPF相应的拉曼模式频率的峰位及对比

    Table 1.  Comparison of Raman modes of pure DPF and potassium-doped tris(diphenacyl)iron.

    numberAssignment$ \omega /{\text{c}}{{\text{m}}^{ - 1}} $(DPF)$ \omega /{\text{c}}{{\text{m}}^{ - 1}} $ (K3DPF)$ \omega /{\text{c}}{{\text{m}}^{ - 1}} $ (Cu-DBM)$ \omega /{\text{c}}{{\text{m}}^{ - 1}} $ (CAC)$ \omega /{\text{c}}{{\text{m}}^{ - 1}} $(KCAC)
    1υ(s)Fe(—O)2561.0522.1567.0
    2υ(s)C—C—C1000.61000.41002.0996.4987.2
    3υ(s)C—C—C1299.51275.71290.01295.11289.6
    4υ(s)C—C—C1320.91309.21317.01328.91322.0
    5υ(s)C—C—C1491.61488.11492.01491.71483.1
    6υ(s)C =O1599.51592.81596.01606.11588.1
    下载: 导出CSV
  • [1]

    高云, 王仁树, 邬小林, 程佳, 邓天郭, 闫循旺, 黄忠兵 2016 物理学报 65 077402Google Scholar

    Gao Y, Wang R S, Wu X L, Cheng J, Deng T G, Yan X W, Huang Z B 2016 Acta Phys. Sin. 65 077402Google Scholar

    [2]

    轩书科 2017 物理学报 66 237401Google Scholar

    Xuan S K 2017 Acta Phys. Sin. 66 237401Google Scholar

    [3]

    Zhang J L, Whitehead G F S, Manning T D, Stewart D, Hiley C I, Pitcher M J, Jansat S, Prassides K, Rosseinsky M J 2018 J. Am. Chem. Soc. 140 18162Google Scholar

    [4]

    Mitsuhashi R, Suzuki Y, Yamanari Y, Mitamura H, Kambe T, Ikeda N, Okamoto H, Fujiwara A, Yamaji M, Kawasaki N, Maniwa Y, Kubozono Y 2010 Nature 464 76Google Scholar

    [5]

    Wang X F, Liu R H, Gui Z, Xie Y L, Yan Y J, Ying J J, Luo X G, Chen X H 2012 Nature Commun. 2 507

    [6]

    Xue M Q, Cao T B, Wang D M, Wu Y, Yang H X, Dong X L, He J B, Li F W, Chen G F 2012 Sci. Rep. 2 389Google Scholar

    [7]

    Wang X F, Yan Y J, Gui Z, Liu R H, Ying J J, Luo X G, Chen X H 2011 Phys. Rev. B 84 214523Google Scholar

    [8]

    Takabayashi Y, Menelaou M, Tamura H, Takemori N, Koretsune T, Štefančič A, Klupp G, Buurma C A J, Nomura Y, Arita R, Arčon D, Rosseinsky M J, Prassides K 2017 Nature Chem. 9 635Google Scholar

    [9]

    Štefančič A, Klupp G, Knaflič T, Yufit D S, Tavčar G, Potočnik A, Beeby A, Arčon D 2017 J. Phys. Chem. C 127 14864

    [10]

    Phan Q T N, Heguri S, Tamura H, Nakano T, Nozue Y, Tanigaki K 2016 Phys. Rev. B 93 075130Google Scholar

    [11]

    Fu M A, Wang R S, Yang H, Zhang P Y, Zhang C F, Chen X J, Gao Y, Huang Z B 2021 Carbon 173 587Google Scholar

    [12]

    Wang R S, Gao Y, Huang Z B, Chen X J 2017 arXiv: 1703.06641v1

    [13]

    Liu W H, Lin H, Kang R Z, Zhang Y, Zhu X Y, Wen H H 2017 Phys. Rev. B 96 224501Google Scholar

    [14]

    Wang R S, Cheng J, Wu X L, Yang H, Chen X J, Gao Y, Huang Z B 2018 J. Chem. Phys. 149 144502Google Scholar

    [15]

    Wang R S, Yang H, Cheng J, Wu X L, Fu M A, Chen X J, Gao Y, Huang Z B. 2019 J. Phys. Chem. C 123 19105Google Scholar

    [16]

    Wang R S, Chen L C, Yang H, Fu M A, Cheng J, Wu X L, Gao Y, Huang Z B, Chen X J 2019 Phys. Chem. Chem. Phys. 21 25976Google Scholar

    [17]

    Rostamnejadi A, Salamati H, Kameli P, Ahmadvand H 2009 J. Magn. Magn. Mater. 321 3126Google Scholar

    [18]

    Venkateswarlu B, Krishnan R H, Chelvane J A, Babu P D, Kumar N H 2019 J. Alloy. Compd. 777 373Google Scholar

    [19]

    Shtrikman S, Wohlfarth E P 1918 Phys. Lett. 85A 467

    [20]

    Goya G F, Berquό T S, Fonseca F C 2003 J. Appl. Phys. 94 3520Google Scholar

    [21]

    Dormann J L, Fiorani D, Cherkaoui R, Tronc E, Lucari F, DʹOrazio F, Spinu L, Noguès M, Kachkchi H, Jolivet J P 1999 J. Magn. Magn. Mater. 203 23Google Scholar

    [22]

    Sharma S K, Kumar R, Kumar S, Kumar V V S, Knobel M, Reddy V R, Banerjee A, Singh M 2007 Solid State Commun. 141 203Google Scholar

    [23]

    Jonason K, Mattsson J, Nordblad P 1996 Phys. Rev. B 53 6507Google Scholar

    [24]

    Nam D N H, Jonason K, Nordblad P, Khiem N V, Phuc N X 1999 Phys. Rev. B 59 4189Google Scholar

    [25]

    Typek J, Guskos N, Zolnierkiewicz G, Lendzion-Bielun Z, Pachla A, Narkiewicz U 2018 Eur. Phys. J. Appl. Phys. 83 10402Google Scholar

    [26]

    潘峰, 丁斌峰, 法涛, 成枫锋, 周生强, 姚淑德 2011 物理学报 60 108501Google Scholar

    Pan F, Ding B F, Fa T, Cheng F F, Zhou S Q, Yao S D 2011 Acta Phys. Sin. 60 108501Google Scholar

    [27]

    Carvell J, Ayieta E, Gavrin A, Cheng R H, Shah V R, Sokol P 2010 J. Appl. Phys. 107 103913Google Scholar

    [28]

    Nekoei A R, Vakili M, Hakimi-Tabar M, TayyariS F, Afzali R, Kjaergaard H G 2014 Spectrochim. Acta A 128 272Google Scholar

  • [1] 贺玮迪, 张培源, 刘翔, 田雪芬, 付馨葛, 邓爱红. 用正电子湮没技术研究H/He中性束辐照钨钾合金中缺陷的演化. 物理学报, 2021, 70(16): 167803. doi: 10.7498/aps.70.20210438
    [2] 张培源, 邓爱红, 田雪芬, 唐军. 利用正电子湮没技术研究钾掺杂钨合金中的缺陷. 物理学报, 2020, 69(9): 096103. doi: 10.7498/aps.69.20191792
    [3] 王尘, 许怡红, 李成, 林海军, 赵铭杰. 基于两步退火法提升Al/n+Ge欧姆接触及Ge n+/p结二极管性能. 物理学报, 2019, 68(17): 178501. doi: 10.7498/aps.68.20190699
    [4] 潘群峰, 张泽宇, 王会真, 林贤, 金钻明, 程振祥, 马国宏. C掺杂FePt铁磁薄膜光诱导超快退磁动力学研究. 物理学报, 2016, 65(12): 127802. doi: 10.7498/aps.65.127802
    [5] 高云, 王仁树, 邬小林, 程佳, 邓天郭, 闫循旺, 黄忠兵. 钾掺杂对三联苯的超导特性探寻. 物理学报, 2016, 65(7): 077402. doi: 10.7498/aps.65.077402
    [6] 李圣昆, 唐军, 毛宏庆, 王明焕, 陈国彬, 翟超, 张晓明, 石云波, 刘俊. Fe3O4纳米颗粒/聚二甲基硅氧烷复合材料磁电容效应的研究. 物理学报, 2014, 63(5): 057501. doi: 10.7498/aps.63.057501
    [7] 潘峰, 丁斌峰, 法涛, 成枫锋, 周生强, 姚淑德. Fe离子注入ZnO生成超顺磁纳米颗粒. 物理学报, 2011, 60(10): 108501. doi: 10.7498/aps.60.108501
    [8] 彭先德, 朱涛, 王芳卫. Co掺杂的ZnO稀磁半导体块体的退火热处理研究. 物理学报, 2009, 58(5): 3274-3279. doi: 10.7498/aps.58.3274
    [9] 刘艳芬, 刘晶会, 贾 城. 侧向铁磁/铁磁超晶格的推迟模式. 物理学报, 2008, 57(3): 1897-1901. doi: 10.7498/aps.57.1897
    [10] 吴伟才, 周印华, 温善鹏, 韩 靓, 田文晶. 溶剂效应对聚苯撑乙烯掺杂苝二酰亚胺太阳电池性能的影响. 物理学报, 2007, 56(8): 5003-5008. doi: 10.7498/aps.56.5003
    [11] 李发伸, 王 涛, 王 颖. H2O2氧化法制备Fe3O4纳米颗粒及与共沉淀法制备该样品的比较. 物理学报, 2005, 54(7): 3100-3105. doi: 10.7498/aps.54.3100
    [12] 郭立平, 成之绪, 韩甫田, 柳 义, 赵志祥. 粉末衍射谱图分解的模拟退火法. 物理学报, 2003, 52(11): 2842-2848. doi: 10.7498/aps.52.2842
    [13] 童六牛, 何贤美, 鹿 牧. 真空退火对周期性界面掺杂Ni80Co20薄膜磁性的影响. 物理学报, 2000, 49(11): 2290-2295. doi: 10.7498/aps.49.2290
    [14] 朱德瑞, 王韧, 谭健华, 莫党. 掺杂的铌酸钾钠锶钡晶体的二波耦合增益系数的研究. 物理学报, 1992, 41(9): 1440-1447. doi: 10.7498/aps.41.1440
    [15] 钟立军, 陶瑞宝. FeRh合金顺磁到铁磁相变的对称理论. 物理学报, 1992, 41(12): 2003-2007. doi: 10.7498/aps.41.2003
    [16] 赵庆兰, 黄依森. 邻苯二甲酸氢钾(KAP)单晶中包裹物的X射线衍射形貌衬度. 物理学报, 1989, 38(7): 1134-1139. doi: 10.7498/aps.38.1134
    [17] 赵庆兰. 邻苯二甲酸氢钾(KAP)的同步辐射截面形貌术. 物理学报, 1988, 37(8): 1345-1349. doi: 10.7498/aps.37.1345
    [18] 赵庆兰, 陈金长, 黄依森. 邻苯二甲酸氢钾(KAP)单晶锥面特征层状包裹形成的结构因素. 物理学报, 1983, 32(3): 294-300. doi: 10.7498/aps.32.294
    [19] 贺存恒, 郑启泰, 沈福岭, 窦士琦, 林光大. 甲氧甲酰基三氯乙酰基亚甲基三苯基磷——Ylid-Ⅳ晶体结构研究. 物理学报, 1982, 31(6): 825-831. doi: 10.7498/aps.31.825
    [20] 千金子, 古元新, 郑朝德, 郑启泰. 3,4-次甲二氧苯甲酰哌啶的晶体结构测定. 物理学报, 1981, 30(3): 418-423. doi: 10.7498/aps.30.418
计量
  • 文章访问数:  3509
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-18
  • 修回日期:  2021-12-20
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-04-20

/

返回文章
返回