搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用正电子湮没技术研究钾掺杂钨合金中的缺陷

张培源 邓爱红 田雪芬 唐军

引用本文:
Citation:

利用正电子湮没技术研究钾掺杂钨合金中的缺陷

张培源, 邓爱红, 田雪芬, 唐军

Study of defects in potassium-doped tungsten alloy by positron annihilation technique

Zhang Pei-Yuan, Deng Ai-Hong, Tian Xue-Fen, Tang Jun
PDF
HTML
导出引用
  • 钨合金中钾的掺杂会引入大量的缺陷, 如尺寸几十纳米的钾泡、高密度的位错以及微米量级的晶粒带来的晶界等, 这些缺陷的浓度和分布直接影响合金的服役性能. 本文运用正电子湮没谱学方法研究钾掺杂钨合金中的缺陷信息, 首先模拟计算了合金中各种缺陷的正电子湮没寿命, 发现钾的嵌入对空位团、位错、晶界等缺陷的寿命影响很小; 然后测量了不同钾含量掺杂钨合金样品的正电子湮没寿命谱, 建立三态捕获模型, 发现样品中有高的位错密度和低的空位团簇浓度, 验证了钾对位错的钉扎作用, 阐述了在钾泡形成初期是钾元素与空位团簇结合并逐渐长大的过程; 最后使用慢正电子多普勒展宽谱技术表征了样品中缺陷随深度的均匀分布和大量存在, 通过扩散长度的比较肯定了钾泡、晶界等缺陷的存在.
    Tungsten alloy is known as a promising plasma-facing material (PFM) in IETR because of high strength, high-temperature stability, low sputtering erosion, low tritium retention, etc. However, tungsten has some disadvantages, such as high ductile-brittle transition temperature, low temperature brittleness, and radiation embrittlement. For the severe environment of PFM, various techniques have been adopted to improve W-based materials, among which the potassium doping is an effective bubble strengthening method, it can bring in nano-sized K bubbles, and enhance the toughness and strength, thermal shock performance, irradiation resistance of the materials. The K bubbles, which can pin grain boundaries (GBs) and dislocations, are the most characteristic defects in W-K alloy and have been widely reported. However, little attention is paid to other defects such as vacancies, GBs and dislocations. In fact, high-density dislocations exist in W-K alloy and vacancies play a considerable role in forming the K bubbles. Thus, positron annihilation technique (including the positron annihilation lifetime spectrum and slow positron beam Doppler broadening spectrum), which is a useful technique for detecting defects in solids, can be used to study these defects in W-K alloy samples. The positron lifetime of potassium bulk is about 376 ps and the positron lifetime of tungsten bulk is about 110 ps. But by simulating positron lifetime of defects in tungsten, it is found that potassium atoms in tungsten lattice do not exhibit the characteristic positron lifetime. Therefore, potassium is not considered in analyzing positron annihilation lifetime spectra of W-K alloy samples with different potassium content (46, 82, 122, 144 ppm). Three-state capture model is established in this paper, the dislocation density and vacancy cluster concentration of these samples are obtained. From the results, the dislocation densities in all samples are very high, but vacancy cluster concentrations are relatively low, and the vacancy cluster concentration in the sample with 82 ppm potassium content is the lowest in all samples. The behavior of potassium atoms in the sintering process is also discussed. Then the slow positron beam Doppler broadening spectra of W-K alloy samples and pure tungsten samples are measured and the obtained data are fitted by VEPFIT. It is noted that the defects in W-K alloy samples are much more than those in pure tungsten sample, and are distributed homogeneously with depth. The positron diffusion length information simultaneously obtained is compared with these values computed by dislocation density and vacancy cluster concentration, confirming the positrons trapped by potassium bubbles and grain boundaries are existent.
      通信作者: 邓爱红, ahdeng@scu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11675114)资助的课题
      Corresponding author: Deng Ai-Hong, ahdeng@scu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.11675114)
    [1]

    Ueda Y, Coenen J W, De Temmerman G, Doerner R P, Linke J, Philipps V, Tsitrone E 2014 Fusion Eng. Des. 89 901Google Scholar

    [2]

    Kang H K 2004 J. Nucl. Mater. 335 1Google Scholar

    [3]

    Davis J W, Barabash V R, Makhankov A, Plöchl L, Slattery K T 1998 J. Nucl. Mater. 258 308

    [4]

    Ueda Y, Tobita K, Katoh Y 2003 J. Nucl. Mater. 313-316 32Google Scholar

    [5]

    Lisgo S W, Kukushkin A, Pitts R A, Reiter D 2013 J. Nucl. Mater. 438 S580Google Scholar

    [6]

    Wurster S, Baluc N, Battabyal M, Crosby T, Du J, García-Rosales C, Hasegawa A, Hoffmann A, Kimura A, Kurishita H, Kurtz R J, Li H, Noh S, Reiser J, Riesch J, Rieth M, Setyawan W, Walter M, You J H, Pippan R 2013 J. Nucl. Mater. 442 S181Google Scholar

    [7]

    王玲 2018 博士论文 (成都: 四川大学)

    Wang L 2018 Ph. D. Dissertation (Chengdu: Sichuan University) (in Chinese)

    [8]

    Hirai T, Pintsuk G 2007 Fusion Eng. Des. 82 389Google Scholar

    [9]

    Wurster S, Pippan R 2009 Scr. Mater. 60 1083Google Scholar

    [10]

    Uytdenhouwen I, Decréton M, Hirai T, Linke J, Pintsuk G, Van Oost G 2007 J. Nucl. Mater. 363 1099

    [11]

    Briant C L 1993 Metall. Trans. A 24 1073Google Scholar

    [12]

    Horacsek O, Toth C L, Nagy A 1998 Int. J. Refract. Met. Hard Mater. 16 51Google Scholar

    [13]

    Schade P 2010 Int. J. Refract. Met. Hard Mater. 28 648Google Scholar

    [14]

    Schade P 1998 Int. J. Refract. Met. Hard Mater. 16 77Google Scholar

    [15]

    Dias M, Mateus R, Catarino N, Franco N, Nunes D, Correia J B, Carvalho P A, Hanada K, Sârbu C 2013 J. Nucl. Mater. 442 69Google Scholar

    [16]

    Huang B, Tang J, Chen L Q, Yang X L, Lian Y Y, Chen L, Liu X, Cui X D, Gu L, Liu C T 2019 J. Alloys Compd. 782 149Google Scholar

    [17]

    Liu G, Zhang G J, Jiang F, Ding X D, Sun Y J, Sun J, Ma E 2013 Nat. Mater. 12 344Google Scholar

    [18]

    Xie Z M, Liu R, Miao S, Yang X D, Zhang T, Wang X P, Fang Q F, Liu C S, Luo G N, Lian Y Y, Liu X 2015 Sci. Rep. 5 16014Google Scholar

    [19]

    Liu R, Xie Z M, Fang Q F, Zhang T, Wang X P, Hao T, Liu C S, Dai Y 2016 J. Alloys Compd. 657 73Google Scholar

    [20]

    Tuomisto F, Makkonen I 2013 Rev. Mod. Phys. 85 1583Google Scholar

    [21]

    Wang S J, Chen Z Q, Wang B, Wu Y C, Fang P F, Zhang Y X 2008 Applied Positron Spectroscopy (Wuhan: Hubei Science & Technology Press) p8 (in Chinese) [王少阶, 陈志权, 王波, 吴奕初, 方鹏飞, 张永学 2008 应用正电子谱学 (武汉: 湖北科学技术出版社) 第8页]

    [22]

    Staab T E M, Krause-Rehberg R, Vetter B, Kieback B, Lange G, Klimanek P 1999 J. Phys. Condens. Matter 11 1757Google Scholar

    [23]

    Heikinheimo J, Mizohata K, Räisänen J, Ahlgren T, Jalkanen P, Lahtinen A, CatarinoN, Alves E, Tuomisto F 2019 APL Mater. 7 021103Google Scholar

    [24]

    Puska M J, Nieminen R M 1983 J. Phys. F: Met. Phys. 13 333Google Scholar

    [25]

    Puska M J, Seitsonen A P, Nieminen R M 1995 Phys. Rev. B 52 10947Google Scholar

    [26]

    Robles J M C, Ogando E, Plazaola F 2007 J. Phys. Condens. Matter 19 176222Google Scholar

    [27]

    Huang B, Chen L Q, Qiu W B, Yang X L, Shi K, Lian Y Y, Liu X, Tang J 2019 J. Nucl. Mater. 520 6Google Scholar

    [28]

    Jin S, Zhang P, Lu E, Guo L, Wang B, Cao X 2016 Acta Mater. 103 658Google Scholar

    [29]

    Troev T, Popov E, MStaikov P, Nankov N, Yoshiie T 2009 Nucl. Instrum. Meth. B 267 535Google Scholar

    [30]

    Puska M J, Lanki P, Nieminen R M 1989 J. Phys. Condens. Matter 1 6081Google Scholar

    [31]

    Kuriplach J, Melikhova O, Hou M, Van Petegem S, Zhurkin E, Šob M 2007 Phys. Stat. Sol. 4 3461

    [32]

    Würschum R, Seeger A 1996 Philos. Mag. 73 1489Google Scholar

    [33]

    Oberdorfer B, Würschum R 2009 Phys. Rev. B 79 184103Google Scholar

    [34]

    Hautojärvi P, Corbel C 1995 Positron Spectroscopy of Solids (Amsterdam: IOS Press) p491

    [35]

    Corbel C, Pierre F, Saarinew K, Hautojarvi P, Moser P 1992 Phys. Rev. B 45 3386Google Scholar

    [36]

    Vehanen A, Lynn K G, Schultz P J, Cartier E, Güntherodt H J, Parkin D M 1984 Phys. Rev. B 29 2371Google Scholar

    [37]

    Staab T E M, Krause-Rehberg R, Kieback B 1999 J. Mater. Sci. 34 3833Google Scholar

    [38]

    Schultz P J, Lynn K G 1988 Rev. Mod. Phys. 60 701Google Scholar

    [39]

    Puska M J, Nieminen R M 1994 Rev. Mod. Phys. 66 841Google Scholar

    [40]

    Veen A van, Schut H, Vries J de, Hakvoort R A, Ijpma M R 1991 AIP Conf. Proc. 218 171

    [41]

    Esteban G A, Perujo A, Sedano L A, Douglas K 2001 J. Nucl. Mater. 295 49Google Scholar

    [42]

    Li Y, Deng A H, Zhou Y L, Zhou B, Wang K, Hou Q, Shi L Q, Qin X B, Wang B Y 2012 Chin. Phys. Lett. 29 047801Google Scholar

  • 图 1  钨晶格中空位及含钾空位的正电子寿命

    Fig. 1.  Positron lifetime of vacancies and potassium-containing vacancies in tungsten lattice.

    图 2  正电子湮没区域分布 (a) 9 × 9 × 9的BCC钨晶格超胞中存在一个空位; (b) W-GB-1超胞中只有晶界一种缺陷; (c) W-GB-1超胞中晶界处存在一个空位; (d) W-GB-1超胞中晶界处存在一个钾原子

    Fig. 2.  Distribution of positron annihilation region: (a) 9 × 9 × 9 BCC tungsten lattice supercell with a vacancy; (b) W-GB-1 supercell; (c) W-GB-1 supercell with a vacancy at the GBs; (d) W-GB-1 supercell with a potassium at the GBs.

    图 3  不同钾含量的钨钾合金样品和纯钨的 S-E 分布及拟合曲线

    Fig. 3.  S-E distribution and fitting curves of PMW and W-K samples with different potassium content.

    图 4  不同钾含量的钨钾合金及纯钨样品的S-W分布

    Fig. 4.  S-W distribution of PMW and W-K samples with different potassium content.

    表 1  正电子湮没寿命计算中建立的晶界和位错模型

    Table 1.  Grain boundary (GB) and dislocation line (DL) model for positron annihilation lifetime calculation

    编号ΣGB planeGB typeRotation axisAngle/(°)
    W-GB-15 $ \langle 210 \rangle $ twistz (001)53.15
    W-GB-213 $ \langle 510 \rangle $ twistz (001)22.61
    W-GB-35$ \{0\bar1 5\} $tiltx (100)22.61
    W-GB-413$ \{0\bar15\} $tiltx (100)53.15
    编号Slip plane(z)Burgers vector[b]Dislocation line[y]Dislocation typeb-y Angle/(°)
    W-DL-1$ (\bar101) $(111)/2$ (\bar 12\bar 1) $EDGE90
    W-DL-2 $ (\bar101) $(111)/2(111)SCREW0
    W-DL-3$ (\bar101) $(111)/2(010)MIX54.73
    下载: 导出CSV

    表 2  晶界和位错包含空位或钾原子时的正电子湮没寿命值

    Table 2.  Positron annihilation lifetime of grain boundary and dislocation with vacancies or potassium atoms.

    编号Intact/psVac.1/psVac.9/psK1/psK9/ps
    W-GB-1116.6198.2297.4110.6108.4
    W-GB-2117.9198.0297.2116.4111.7
    W-GB-3135.2204.8304.4142.3144.1
    W-GB-4142.2198.0317.3141.0144.6
    W-DL-1133.9160.3309.7133.9134.2
    W-DL-2106.5194.7324.0104.7105.8
    W-DL-3123.4158.0315.4123.4123.4
    下载: 导出CSV

    表 3  不同钾含量的钨钾合金样品的双组分正电子寿命值

    Table 3.  Two-component positron lifetime of W-K samples with different potassium content.

    钾含量/ppm编号${\tau _{{\rm{1, }}\exp }}$/ps${I_{1, \exp }}$/%${\tau _{{\rm{2, }}\exp }}$/ps${I_{2, \exp }}$/%平均寿命${\tau _{{\rm{av}}}}$/ps捕获率$\kappa $/ns–1计算体寿命$\tau _{\rm{1}}^{{\rm{cal}}}$/ps
    46A1123.474.62296.225.38167.31.199997.2
    82B1123.375.68305.124.32167.51.175297.4
    122C1140.172.42332.627.58193.21.139597.7
    144D1143.277.07328.322.93185.60.9028100.1
    下载: 导出CSV

    表 4  不同钾含量的钨钾合金样品中位错和空位团簇

    Table 4.  Dislocation and vacancy clusters in W-K samples with potassium content.

    钾含量/ppm编号位错捕获率${\kappa _1}$/ps–1空位团簇捕获率${\kappa _2}$/ps–1位错密度${C_{{\rm{dis}}}}$/1010 cm2空位团簇浓度${C_{{\rm{cl}}}}$/10–7
    46A10.009120.005050.82891.515
    82B10.008950.004740.81361.424
    122C10.033590.015113.05344.538
    144D10.044000.014893.99914.470
    下载: 导出CSV

    表 5  不同钾含量的钨合金样品的S参数拟合

    Table 5.  Fitted values of S parameters of W-K samples with different potassium content.

    钾含量/ppm编号第一层厚度/nm第一层S1第二层S2
    46A2100.45210.4424
    82B2110.45200.4406
    122C2130.45210.4455
    0PMW100.40500.3880
    下载: 导出CSV

    表 6  不同钾含量的钨合金样品中正电子扩散长度

    Table 6.  Positron diffusion length in tungsten alloy samples with different potassium content.

    钾含量/ppm编号寿命谱$L_{{\rm{ +, eff}}}^{{\rm{cal}}}$/nm编号第一层$L_{ +, {\rm{eff}}}^1$/nm第二层$L_{ +, {\rm{eff}}}^2$/nm
    46A177.59A22.73 ± 0.8959.75 ± 9.96
    82B178.39B24.98 ± 1.0658.61 ± 7.86
    122C149.22C21.65 ± 1.5637.44 ± 7.72
    0PMW6.50 ± 0.29109.32 ± 5.46
    下载: 导出CSV
  • [1]

    Ueda Y, Coenen J W, De Temmerman G, Doerner R P, Linke J, Philipps V, Tsitrone E 2014 Fusion Eng. Des. 89 901Google Scholar

    [2]

    Kang H K 2004 J. Nucl. Mater. 335 1Google Scholar

    [3]

    Davis J W, Barabash V R, Makhankov A, Plöchl L, Slattery K T 1998 J. Nucl. Mater. 258 308

    [4]

    Ueda Y, Tobita K, Katoh Y 2003 J. Nucl. Mater. 313-316 32Google Scholar

    [5]

    Lisgo S W, Kukushkin A, Pitts R A, Reiter D 2013 J. Nucl. Mater. 438 S580Google Scholar

    [6]

    Wurster S, Baluc N, Battabyal M, Crosby T, Du J, García-Rosales C, Hasegawa A, Hoffmann A, Kimura A, Kurishita H, Kurtz R J, Li H, Noh S, Reiser J, Riesch J, Rieth M, Setyawan W, Walter M, You J H, Pippan R 2013 J. Nucl. Mater. 442 S181Google Scholar

    [7]

    王玲 2018 博士论文 (成都: 四川大学)

    Wang L 2018 Ph. D. Dissertation (Chengdu: Sichuan University) (in Chinese)

    [8]

    Hirai T, Pintsuk G 2007 Fusion Eng. Des. 82 389Google Scholar

    [9]

    Wurster S, Pippan R 2009 Scr. Mater. 60 1083Google Scholar

    [10]

    Uytdenhouwen I, Decréton M, Hirai T, Linke J, Pintsuk G, Van Oost G 2007 J. Nucl. Mater. 363 1099

    [11]

    Briant C L 1993 Metall. Trans. A 24 1073Google Scholar

    [12]

    Horacsek O, Toth C L, Nagy A 1998 Int. J. Refract. Met. Hard Mater. 16 51Google Scholar

    [13]

    Schade P 2010 Int. J. Refract. Met. Hard Mater. 28 648Google Scholar

    [14]

    Schade P 1998 Int. J. Refract. Met. Hard Mater. 16 77Google Scholar

    [15]

    Dias M, Mateus R, Catarino N, Franco N, Nunes D, Correia J B, Carvalho P A, Hanada K, Sârbu C 2013 J. Nucl. Mater. 442 69Google Scholar

    [16]

    Huang B, Tang J, Chen L Q, Yang X L, Lian Y Y, Chen L, Liu X, Cui X D, Gu L, Liu C T 2019 J. Alloys Compd. 782 149Google Scholar

    [17]

    Liu G, Zhang G J, Jiang F, Ding X D, Sun Y J, Sun J, Ma E 2013 Nat. Mater. 12 344Google Scholar

    [18]

    Xie Z M, Liu R, Miao S, Yang X D, Zhang T, Wang X P, Fang Q F, Liu C S, Luo G N, Lian Y Y, Liu X 2015 Sci. Rep. 5 16014Google Scholar

    [19]

    Liu R, Xie Z M, Fang Q F, Zhang T, Wang X P, Hao T, Liu C S, Dai Y 2016 J. Alloys Compd. 657 73Google Scholar

    [20]

    Tuomisto F, Makkonen I 2013 Rev. Mod. Phys. 85 1583Google Scholar

    [21]

    Wang S J, Chen Z Q, Wang B, Wu Y C, Fang P F, Zhang Y X 2008 Applied Positron Spectroscopy (Wuhan: Hubei Science & Technology Press) p8 (in Chinese) [王少阶, 陈志权, 王波, 吴奕初, 方鹏飞, 张永学 2008 应用正电子谱学 (武汉: 湖北科学技术出版社) 第8页]

    [22]

    Staab T E M, Krause-Rehberg R, Vetter B, Kieback B, Lange G, Klimanek P 1999 J. Phys. Condens. Matter 11 1757Google Scholar

    [23]

    Heikinheimo J, Mizohata K, Räisänen J, Ahlgren T, Jalkanen P, Lahtinen A, CatarinoN, Alves E, Tuomisto F 2019 APL Mater. 7 021103Google Scholar

    [24]

    Puska M J, Nieminen R M 1983 J. Phys. F: Met. Phys. 13 333Google Scholar

    [25]

    Puska M J, Seitsonen A P, Nieminen R M 1995 Phys. Rev. B 52 10947Google Scholar

    [26]

    Robles J M C, Ogando E, Plazaola F 2007 J. Phys. Condens. Matter 19 176222Google Scholar

    [27]

    Huang B, Chen L Q, Qiu W B, Yang X L, Shi K, Lian Y Y, Liu X, Tang J 2019 J. Nucl. Mater. 520 6Google Scholar

    [28]

    Jin S, Zhang P, Lu E, Guo L, Wang B, Cao X 2016 Acta Mater. 103 658Google Scholar

    [29]

    Troev T, Popov E, MStaikov P, Nankov N, Yoshiie T 2009 Nucl. Instrum. Meth. B 267 535Google Scholar

    [30]

    Puska M J, Lanki P, Nieminen R M 1989 J. Phys. Condens. Matter 1 6081Google Scholar

    [31]

    Kuriplach J, Melikhova O, Hou M, Van Petegem S, Zhurkin E, Šob M 2007 Phys. Stat. Sol. 4 3461

    [32]

    Würschum R, Seeger A 1996 Philos. Mag. 73 1489Google Scholar

    [33]

    Oberdorfer B, Würschum R 2009 Phys. Rev. B 79 184103Google Scholar

    [34]

    Hautojärvi P, Corbel C 1995 Positron Spectroscopy of Solids (Amsterdam: IOS Press) p491

    [35]

    Corbel C, Pierre F, Saarinew K, Hautojarvi P, Moser P 1992 Phys. Rev. B 45 3386Google Scholar

    [36]

    Vehanen A, Lynn K G, Schultz P J, Cartier E, Güntherodt H J, Parkin D M 1984 Phys. Rev. B 29 2371Google Scholar

    [37]

    Staab T E M, Krause-Rehberg R, Kieback B 1999 J. Mater. Sci. 34 3833Google Scholar

    [38]

    Schultz P J, Lynn K G 1988 Rev. Mod. Phys. 60 701Google Scholar

    [39]

    Puska M J, Nieminen R M 1994 Rev. Mod. Phys. 66 841Google Scholar

    [40]

    Veen A van, Schut H, Vries J de, Hakvoort R A, Ijpma M R 1991 AIP Conf. Proc. 218 171

    [41]

    Esteban G A, Perujo A, Sedano L A, Douglas K 2001 J. Nucl. Mater. 295 49Google Scholar

    [42]

    Li Y, Deng A H, Zhou Y L, Zhou B, Wang K, Hou Q, Shi L Q, Qin X B, Wang B Y 2012 Chin. Phys. Lett. 29 047801Google Scholar

  • [1] 叶凤娇, 张鹏, 张红强, 况鹏, 于润升, 王宝义, 曹兴忠. 正电子湮没符合多普勒展宽技术的材料学研究进展. 物理学报, 2024, 73(7): 077801. doi: 10.7498/aps.73.20231487
    [2] 尹昊, 宋通, 彭雄刚, 张鹏, 于润升, 陈喆, 曹兴忠, 王宝义. 聚乙烯亚胺改性介孔二氧化硅SBA-15微观结构的小角X射线散射及正电子湮没谱学研究. 物理学报, 2023, 72(11): 114101. doi: 10.7498/aps.72.20230265
    [3] 李重阳, 赵宾, 张俊伟. 电子偶素在OMC/SBA-15, OMC@SBA-15及CuO@SBA-15催化剂中的化学猝灭. 物理学报, 2022, 71(6): 067805. doi: 10.7498/aps.71.20211814
    [4] 朱宏钢, 付明安, 任闯, 高云, 黄忠兵. 钾掺杂三(二苯甲酰甲基)铁的超顺磁性. 物理学报, 2022, 71(8): 087501. doi: 10.7498/aps.71.20212128
    [5] 贺玮迪, 张培源, 刘翔, 田雪芬, 付馨葛, 邓爱红. 用正电子湮没技术研究H/He中性束辐照钨钾合金中缺陷的演化. 物理学报, 2021, 70(16): 167803. doi: 10.7498/aps.70.20210438
    [6] 朱特, 曹兴忠. 正电子湮没谱学在金属材料氢/氦行为研究中的应用. 物理学报, 2020, 69(17): 177801. doi: 10.7498/aps.69.20200724
    [7] 曹兴忠, 宋力刚, 靳硕学, 张仁刚, 王宝义, 魏龙. 正电子湮没谱学研究半导体材料微观结构的应用进展. 物理学报, 2017, 66(2): 027801. doi: 10.7498/aps.66.027801
    [8] 高云, 王仁树, 邬小林, 程佳, 邓天郭, 闫循旺, 黄忠兵. 钾掺杂对三联苯的超导特性探寻. 物理学报, 2016, 65(7): 077402. doi: 10.7498/aps.65.077402
    [9] 张艳辉, 李彦龙, 谷月, 晁月盛. 中频磁脉冲处理Fe52Co34Hf7B6Cu1非晶合金的正电子湮没研究. 物理学报, 2012, 61(16): 167502. doi: 10.7498/aps.61.167502
    [10] 张丽娟, 王力海, 刘建党, 李强, 成斌, 张杰, 安然, 赵明磊, 叶邦角. 非铁电压电复合陶瓷SrTiO3-Bi12TiO20 (ST-BT) 的正电子湮没谱学研究. 物理学报, 2012, 61(23): 237805. doi: 10.7498/aps.61.237805
    [11] 晁月盛, 郭红, 高翔宇, 罗丽平, 朱涵娴. 退火处理Fe43Co43Hf7B6Cu1非晶合金的正电子湮没研究. 物理学报, 2011, 60(1): 017504. doi: 10.7498/aps.60.017504
    [12] 祁宁, 王元为, 王栋, 王丹丹, 陈志权. Co掺杂纳米ZnO微结构的正电子湮没研究. 物理学报, 2011, 60(10): 107805. doi: 10.7498/aps.60.107805
    [13] 许红霞, 郝颖萍, 韩荣典, 翁惠民, 杜淮江, 叶邦角. 纳米Fe3 O4 颗粒的正电子湮没谱学研究. 物理学报, 2011, 60(6): 067803. doi: 10.7498/aps.60.067803
    [14] 康婷霞, 毕翱翔, 朱俊. MoO3在多孔γ-Al2 O3中固熔分散的研究. 物理学报, 2011, 60(6): 067805. doi: 10.7498/aps.60.067805
    [15] 周凯, 李辉, 王柱. 正电子湮没谱和光致发光谱研究掺锌GaSb质子辐照缺陷. 物理学报, 2010, 59(7): 5116-5121. doi: 10.7498/aps.59.5116
    [16] 郝延明, 严达利, 傅斌, 王立群, 郝小鹏, 王宝义. Tb2AlFe16-xMnx化合物的结构、磁性及正电子湮没谱研究. 物理学报, 2009, 58(9): 6494-6499. doi: 10.7498/aps.58.6494
    [17] 吴世亮, 陈叶清, 吴奕初, 王少阶, 温熙宇, 翟同广. AA 2037新型连铸铝合金热轧板退火的正电子湮没研究. 物理学报, 2006, 55(11): 6129-6135. doi: 10.7498/aps.55.6129
    [18] 朱 俊, 王莉莉, 马 莉, 王少阶. 用正电子研究NaCl在NaY沸石上的固溶过程. 物理学报, 2003, 52(11): 2929-2933. doi: 10.7498/aps.52.2929
    [19] 华劲松, 经福谦, 谭 华. 一种获得剪切模量压强二阶偏导数G″P的方法. 物理学报, 2000, 49(12): 2443-2447. doi: 10.7498/aps.49.2443
    [20] 何永枢, 黄懋容, 王欣竹, 马如璋, 于恩华. Fe-Ni合金马氏体相变缺陷的正电子湮没研究. 物理学报, 1986, 35(11): 1528-1531. doi: 10.7498/aps.35.1528
计量
  • 文章访问数:  5694
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-25
  • 修回日期:  2020-02-03
  • 刊出日期:  2020-05-05

/

返回文章
返回