搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚乙烯亚胺改性介孔二氧化硅SBA-15微观结构的小角X射线散射及正电子湮没谱学研究

尹昊 宋通 彭雄刚 张鹏 于润升 陈喆 曹兴忠 王宝义

引用本文:
Citation:

聚乙烯亚胺改性介孔二氧化硅SBA-15微观结构的小角X射线散射及正电子湮没谱学研究

尹昊, 宋通, 彭雄刚, 张鹏, 于润升, 陈喆, 曹兴忠, 王宝义

Small angle X-ray scattering and positron annihilation spectroscopy of polyethyleneimine functionalized ordered mesoporous silica SBA-15 microstructure

Yin Hao, Song Tong, Peng Xiong-Gang, Zhang Peng, Yu Run-Sheng, Chen Zhe, Cao Xing-Zhong, Wang Bao-Yi
PDF
HTML
导出引用
  • SBA-15由于具有高比表面积、孔容大、孔径可调、热稳定性好和成本相对低廉等优点, 在吸附、分离、催化和纳米材料等领域具有广泛的应用前景, 而利用有机官能团改性SBA-15已经成为当前材料的热点之一, 但有机官能团的引入势必会影响材料的孔结构, 进而影响其性能. 因此, 如何更全面地表征材料的孔结构也成为人们关注的焦点. 采用小角X射线散射(SAXS)技术对PEI/SBA-15介孔分子筛的孔结构进行表征, 利用相关函数和弦长分布理论得到了聚乙烯亚胺改性介孔二氧化硅(PEI/SBA-15)的孔结构和周期性信息, 结合正电子湮没寿命谱(PALS)技术进行比较. 结果表明: 随着PEI质量分数的增加, PEI/SBA-15介孔分子筛的周期性结构没有发生明显变化, 通过弦长分布 (CLD)函数得到的孔径尺寸也仅从8.3 nm降至7.6 nm. 利用PALS获得了2种长寿命组分τ3τ4, 其中τ3反映了SBA-15基体内部的无规微孔结构, 而τ4反映SBA-15六方孔道的尺寸, 与SAXS结果相比, 介孔孔径具有相同的变化趋势. 通过结合SAXS和PALS技术, 可以更加深入地揭示材料中微观结构的演变, 从而为未来功能纳米复合材料的结构表征提供一种独特的方法.
    Owing to its advantages of high specific surface area, large pore volume, adjustable pore size, good thermal stability and relatively low cost, SBA-15 has a wide range of application prospects in adsorption, separation, catalysis, nanomaterials and other fields. And the use of organic functional groups to modify SBA-15 has become one of the hot spots of research on materials, but the introduction of organic functional groups will inevitably affect the pore structure of material, affecting its performance. Therefore, how to more comprehensively characterize the pore structure of material has received much attention. In this work, small angle X-ray scattering (SAXS) technique is used to characterize the pore structure of PEI/SBA-15 mesoporous molecular sieve. The pore structure and periodicity information of PEI/SBA-15 are obtained by using correlation function and string length distribution theory, and compared with those obtained by positron annihilation lifetime spectroscopy (PALS) technique. The results show that the periodic structure of PEI/SBA-15 mesoporous molecular sieve does not change significantly with the increase of PEI mass percent, and the pore size of PEI/SBA-15 mesoporous molecular sieve only decreases from 8.3 nm to 7.6 nm by the chord length distribution function. Two long-life components, τ3 and τ4, are obtained by PALS, and τ3 reflects the random pores structure in SBA-15 matrix, while τ4 denotes the size of SBA-15 hexagonal pores. Compared with the results of SAXS, the mesoporous pore size obtained by PALS technique shows the same trend. By combining SAXS technique and PALS technique, the evolution of material microstructure can be revealed in more depth, thus providing a unique method for studying the structural characterization of functional nanocomposites in the future.
      通信作者: 于润升, yursh@ihep.ac.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2019YFA0210002)和国家自然科学基金(批准号: 12275299, 11875055)资助的课题.
      Corresponding author: Yu Run-Sheng, yursh@ihep.ac.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2019YFA0210002) and the National Natural Science Foundation of China (Grant Nos. 12275299, 11875055).
    [1]

    彭雪婷, 吕昊东, 张贤 2022 气候变化研究进展 18 580

    Peng X T, Lyu H D Zhang X 2022 Adv. Clim. Change Res. 18 580

    [2]

    Baena-Moreno F M, Rodriguez-Galan M, Vega F, Alonso-Farinas B, Arenas L F V, Navarrete B 2019 Energ Source Part A 41 1403Google Scholar

    [3]

    Hermida L, Agustian J, Abdullah A Z, Mohamed A R 2019 Open Chem. 17 1000Google Scholar

    [4]

    Li L, Zhao N, Wei W, Sun Y H 2013 Fuel 108 112Google Scholar

    [5]

    Zhang Z E, Pan S Y, Li H, Cai J C, Olabi A G, Anthony E J Manovic V 2020 Renew. Sust. Energ. Rev. 125 17

    [6]

    Samanta A, Zhao A, Shimizu G K H, Sarkar P, Gupta R 2012 Ind. Eng. Chem. Res. 51 1438Google Scholar

    [7]

    Zhao D, Feng J, Huo Q, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D 1998 Science 279 548Google Scholar

    [8]

    Verma P, Kuwahara Y, Mori K, Raja R, Yamashita H 2020 Nanoscale 12 11333Google Scholar

    [9]

    Singh B, Na J, Konarova M, Wakihara T, Yamauchi Y, Salomon C, Gawande M B 2020 Bull. Chem. Soc. Jpn. 93 1459Google Scholar

    [10]

    Wang H, Liu C J 2011 Appl. Catal. B 106 672Google Scholar

    [11]

    Ledesma B, Juarez J, Mazario J, Domine M, Beltramone A 2021 Catal. Today 360 147Google Scholar

    [12]

    Li D L, Chai K G, Yao X D, Zhou L Q, Wu K Y, Huang Z H, Yan J T, Qin X Z, Wei W, Ji H B 2021 J. Colloid Interface Sci. 583 100Google Scholar

    [13]

    Gang D, Ahmad Z U, Lian Q Y, Yao L G, Zappi M E 2021 Chem. Eng. J. 403 20

    [14]

    Wu B H, Zhang S C, Tang T, Xu Y, Liu Y, Wu Z H 2010 Acta Phys. -Chim. Sin. 26 2217Google Scholar

    [15]

    Mohamed H F M, El-Sayed A M A, Abd-Elsadek G G 2001 Polym. Degrad. Stabil. 71 93

    [16]

    Debye A, Bueche A M J 1949 Appl. Phys. 20 518Google Scholar

    [17]

    Burger C, Ruland W 2001 Acta Crystallogr. Sect. A 57 482Google Scholar

    [18]

    Tao S J 1972 J. Chem. Phys. 56 5499Google Scholar

    [19]

    Eldrup M, Lightbody D, Sherwood J N 1981 Chem. Phys. 63 51Google Scholar

    [20]

    Ito K, Nakanishi H, Ujihira Y 1999 J. Phys. Chem. B 103 4555Google Scholar

    [21]

    Wiertel M, Surowiec Z, Budzynski M, Gac W 2013 Nukleonika 58 245

    [22]

    王少阶, 陈志权, 王波, 吴亦初, 方鹏飞, 张永学 2008 应用正电子谱学 (武汉: 湖北科学技术出版社) 第130页

    Wang S J, Chen Z Q, Wang B, Wu Y C, Fang P F, Zhang Y X 2008 Applied Positron Spectroscopy (Wuhan: Hubei Science and Technology Press) p130 (in Chinese)

    [23]

    Griffith T C, Heyland G R, Lines K S, Twomey T R 1978 J Phys. B-at Mol. Opt. 11 L743Google Scholar

  • 图 1  (a) 经过不同质量分数PEI溶液浸渍后样品的二维SAXS谱图; (b) 由二维SAXS谱图经数据处理得到的一维SAXS谱即I-q曲线

    Fig. 1.  (a) Two-dimensional SAXS patterns of samples impregnated with PEI solution of different concentrations; (b) one-dimensional SAXS spectra obtained by data processing from two-dimensional SAXS spectra, namely I-q curve.

    图 2  样品的相关函数曲线

    Fig. 2.  Correlation function curves of samples.

    图 3  (a) 样品的CLD函数曲线; (b) CLD函数参数在SBA-15中的示意图

    Fig. 3.  (a) Chord length distribution function curves of samples; (b) schematic diagram of chord length distribution function parameters in SBA-15.

    图 4  (a) 0-SBA(100)晶面和(b) 20-SBA(010)晶面的TEM图像

    Fig. 4.  TEM images of (a) 0-SBA crystal plane (100) and (b) 20-SBA crystal plane (010).

    图 5  经过不同质量分数PEI溶液浸渍后的样品的PALS谱图

    Fig. 5.  PALS spectra of samples impregnated with PEI solution of different mass percent.

    图 6  经MELT程序解谱得到的τ3τ4随PEI质量分数变化的连续谱图

    Fig. 6.  Continuous spectra of τ3and τ4 with PEI mass percent obtained by MELT program.

    图 7  PALS和SAXS得到的不同样品孔尺寸随PEI质量分数变化示意图

    Fig. 7.  Variation of different pore sizes with PEI mass percent by PALS and SAXS.

  • [1]

    彭雪婷, 吕昊东, 张贤 2022 气候变化研究进展 18 580

    Peng X T, Lyu H D Zhang X 2022 Adv. Clim. Change Res. 18 580

    [2]

    Baena-Moreno F M, Rodriguez-Galan M, Vega F, Alonso-Farinas B, Arenas L F V, Navarrete B 2019 Energ Source Part A 41 1403Google Scholar

    [3]

    Hermida L, Agustian J, Abdullah A Z, Mohamed A R 2019 Open Chem. 17 1000Google Scholar

    [4]

    Li L, Zhao N, Wei W, Sun Y H 2013 Fuel 108 112Google Scholar

    [5]

    Zhang Z E, Pan S Y, Li H, Cai J C, Olabi A G, Anthony E J Manovic V 2020 Renew. Sust. Energ. Rev. 125 17

    [6]

    Samanta A, Zhao A, Shimizu G K H, Sarkar P, Gupta R 2012 Ind. Eng. Chem. Res. 51 1438Google Scholar

    [7]

    Zhao D, Feng J, Huo Q, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D 1998 Science 279 548Google Scholar

    [8]

    Verma P, Kuwahara Y, Mori K, Raja R, Yamashita H 2020 Nanoscale 12 11333Google Scholar

    [9]

    Singh B, Na J, Konarova M, Wakihara T, Yamauchi Y, Salomon C, Gawande M B 2020 Bull. Chem. Soc. Jpn. 93 1459Google Scholar

    [10]

    Wang H, Liu C J 2011 Appl. Catal. B 106 672Google Scholar

    [11]

    Ledesma B, Juarez J, Mazario J, Domine M, Beltramone A 2021 Catal. Today 360 147Google Scholar

    [12]

    Li D L, Chai K G, Yao X D, Zhou L Q, Wu K Y, Huang Z H, Yan J T, Qin X Z, Wei W, Ji H B 2021 J. Colloid Interface Sci. 583 100Google Scholar

    [13]

    Gang D, Ahmad Z U, Lian Q Y, Yao L G, Zappi M E 2021 Chem. Eng. J. 403 20

    [14]

    Wu B H, Zhang S C, Tang T, Xu Y, Liu Y, Wu Z H 2010 Acta Phys. -Chim. Sin. 26 2217Google Scholar

    [15]

    Mohamed H F M, El-Sayed A M A, Abd-Elsadek G G 2001 Polym. Degrad. Stabil. 71 93

    [16]

    Debye A, Bueche A M J 1949 Appl. Phys. 20 518Google Scholar

    [17]

    Burger C, Ruland W 2001 Acta Crystallogr. Sect. A 57 482Google Scholar

    [18]

    Tao S J 1972 J. Chem. Phys. 56 5499Google Scholar

    [19]

    Eldrup M, Lightbody D, Sherwood J N 1981 Chem. Phys. 63 51Google Scholar

    [20]

    Ito K, Nakanishi H, Ujihira Y 1999 J. Phys. Chem. B 103 4555Google Scholar

    [21]

    Wiertel M, Surowiec Z, Budzynski M, Gac W 2013 Nukleonika 58 245

    [22]

    王少阶, 陈志权, 王波, 吴亦初, 方鹏飞, 张永学 2008 应用正电子谱学 (武汉: 湖北科学技术出版社) 第130页

    Wang S J, Chen Z Q, Wang B, Wu Y C, Fang P F, Zhang Y X 2008 Applied Positron Spectroscopy (Wuhan: Hubei Science and Technology Press) p130 (in Chinese)

    [23]

    Griffith T C, Heyland G R, Lines K S, Twomey T R 1978 J Phys. B-at Mol. Opt. 11 L743Google Scholar

  • [1] 金鑫, 杨春明, 滑文强, 李怡雯, 王劼. PS3000-b-PAA5000球形胶束温度效应的原位小角X射线散射技术研究. 物理学报, 2018, 67(4): 048301. doi: 10.7498/aps.67.20172167
    [2] 孙星, 默广, 赵林志, 戴兰宏, 吴忠华, 蒋敏强. 小角X射线散射表征非晶合金纳米尺度结构非均匀. 物理学报, 2017, 66(17): 176109. doi: 10.7498/aps.66.176109
    [3] 李裕, 罗江山, 王柱, 杨蒙生, 邢丕峰, 易勇, 雷海乐. 铝纳米晶的正电子湮没研究. 物理学报, 2014, 63(24): 247803. doi: 10.7498/aps.63.247803
    [4] 刘晓旭, 殷景华, 程伟东, 卜文斌, 范勇, 吴忠华. 利用小角X射线散射技术研究组分对聚酰亚胺/Al2O3杂化薄膜界面特性与分形特征的影响. 物理学报, 2011, 60(5): 056101. doi: 10.7498/aps.60.056101
    [5] 杜晓明, 吴尔冬, 董宝中, 吴忠华, 苑学众. Ti-Mo合金氢化物微观缺陷的小角X射线散射研究. 物理学报, 2008, 57(9): 5782-5787. doi: 10.7498/aps.57.5782
    [6] 张宏俊, 王 栋, 陈志权, 王少阶, 徐友明, 罗锡辉. MoO3/Al2O3催化剂中Mo分散的正电子研究. 物理学报, 2008, 57(11): 7333-7337. doi: 10.7498/aps.57.7333
    [7] 叶崇志, 廖晶莹, 杨培志, 谢建军, 罗 澜, 曹顿华. F, Y双掺钨酸铅晶体的发光性能和微观缺陷. 物理学报, 2006, 55(4): 1947-1952. doi: 10.7498/aps.55.1947
    [8] 程伟东, 孙民华, 李佳云, 王爱屏, 孙永丽, 刘 芳, 刘雄军. Cu60Zr30Ti10非晶合金弛豫和晶化过程的小角X射线散射研究. 物理学报, 2006, 55(12): 6673-6676. doi: 10.7498/aps.55.6673
    [9] 徐 耀, 吴 东, 孙予罕, 李志宏, 董宝中, 吴中华. 小角x射线散射法研究氧化硅溶胶的制备环境依赖性. 物理学报, 2005, 54(6): 2814-2820. doi: 10.7498/aps.54.2814
    [10] 郑立静, 李树索, 李焕喜, 陈昌麒, 韩雅芳, 董宝中. 7050铝合金等通道转角挤压过程中显微结构和力学性能演化的小角x射线散射研究. 物理学报, 2005, 54(4): 1665-1670. doi: 10.7498/aps.54.1665
    [11] 夏庆中, 陈 波, 曾贵玉, 罗顺火, 董海山, 荣利霞, 董宝中. 三氨基三硝基苯材料微孔结构的小角x射线散射实验研究. 物理学报, 2005, 54(7): 3273-3277. doi: 10.7498/aps.54.3273
    [12] 邵元智, 钟伟荣, 任 山, 蔡志苏, 龚 雷. 纳米团聚生长的多重分形谱. 物理学报, 2005, 54(7): 3290-3296. doi: 10.7498/aps.54.3290
    [13] 赵辉, 杜志伟, 周铁涛, 刘培英, 董宝中, 陈昌麒. Al-Zn-Mg-Cu-Li合金时效过程微结构演化的小角x射线散射研究. 物理学报, 2004, 53(4): 1251-1254. doi: 10.7498/aps.53.1251
    [14] 赵辉, 郭梅芳, 董宝中. 小角x射线散射结晶聚合物过渡层厚度的测定. 物理学报, 2004, 53(4): 1247-1250. doi: 10.7498/aps.53.1247
    [15] 徐 耀, 李志宏, 范文浩, 吴 东, 孙予罕, 王 俊, 董宝中. 小角x射线散射方法研究甲基改性氧化硅干凝胶的孔结构. 物理学报, 2003, 52(3): 635-640. doi: 10.7498/aps.52.635
    [16] 荣利霞, 解立平, 董宝中, 林伟刚, 王 俊. 同步辐射小角x射线散射方法研究由城市固体垃圾制备的活性炭. 物理学报, 2003, 52(3): 630-634. doi: 10.7498/aps.52.630
    [17] 荣利霞, 魏柳荷, 董宝中, 王俊, 李福绵, 李子臣. 两亲性嵌段聚合物的同步辐射小角x射线散射研究. 物理学报, 2002, 51(8): 1773-1777. doi: 10.7498/aps.51.1773
    [18] 赵辉, 董宝中, 郭梅芳, 王良诗, 乔金梁. 小角x射线散射结晶聚合物结构的研究. 物理学报, 2002, 51(12): 2887-2891. doi: 10.7498/aps.51.2887
    [19] 李志宏, 巩雁军, 吴东, 孙予罕, 王俊, 柳义, 董宝中. 小角X射线散射法测定溶胶平均界面厚度. 物理学报, 2001, 50(6): 1128-1131. doi: 10.7498/aps.50.1128
    [20] 李志宏, 孙继红, 吴 东, 孙予罕, 柳 义, 生文君, 董宝中. 小角X射线散射方法测定二氧化硅干凝胶的平均孔径. 物理学报, 2000, 49(7): 1312-1315. doi: 10.7498/aps.49.1312
计量
  • 文章访问数:  4166
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-23
  • 修回日期:  2023-03-27
  • 上网日期:  2023-03-30
  • 刊出日期:  2023-06-05

/

返回文章
返回