Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Applications of graphene in anti-corrosion of metal surface

Guo Xiao-Meng Qing Fang-Zhu Li Xue-Song

Citation:

Applications of graphene in anti-corrosion of metal surface

Guo Xiao-Meng, Qing Fang-Zhu, Li Xue-Song
PDF
HTML
Get Citation
  • As an emerging material, graphene has become a research hotspot in the field of anti-corrosion because of its excellent chemical inertia and permeability resistance. In this paper, combined with the latest research results, the applications of graphene film and graphene powders in the field of anti-corrosion are discussed more comprehensively. First, the anti-corrosion mechanisms of graphene (mainly including barrier effect, shielding effect, corrosion inhibition synergy, enhancement of coating adhesion, cathodic protection, and self-healing effect) and its corresponding coating preparation methods (graphene film prepared by chemical vapor deposition method and composite coatings prepared with graphene powders) are introduced. Then, the influences of different factors such as defects, conductivity, oxidation degree, flake size, and content of graphene on the anti-corrosion performance are discussed. Finally, various methods are comprehensively compared with each other, and future development is prospected. This paper not only reviews the existing work, but also has a certain reference value for preparing graphene materials with better corrosion resistance in the future.
      Corresponding author: Qing Fang-Zhu, qingfz@uestc.edu.cn ; Li Xue-Song, lxs@uestc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51802036, 51772043)
    [1]

    Pan H 2018 MATEC Web. Conf. 207 03010Google Scholar

    [2]

    Ma L W, Ren C H, Wang J K, Liu T, Yang H, Wang Y J, Huang Y, Zhang D W 2020 Chem. Eng. J. DOI: 10.1016/j.cej.2020.127854Google Scholar

    [3]

    Sadawy M, Saad S, Abdel-Karim R 2020 Trans. Nonferrous Met. Soc. China 30 2067Google Scholar

    [4]

    Glover C F, Cain T W, Scully J R 2019 Corros. Sci. 149 195Google Scholar

    [5]

    Tasic Z Z, Mihajlovic M B P, Radovanovic M B, Simonovic A T, Antonijevic M M 2018 J. Mol. Struct. 1159 46Google Scholar

    [6]

    Qiang Y J, Zhang S T, Xu S Y, Li W P 2016 J. Colloid Interface Sci. 472 52Google Scholar

    [7]

    Peng T Y, Xiao R H, Rong Z Y, Liu H B, Hu Q Y, Wang S H, Li X, Zhang J M 2020 Chem. Asian J. 15 3915Google Scholar

    [8]

    Tang H Y, Qu Z P, Wang L, Ye H Y, Fan X J, Zhang G Q 2019 Phys. Chem. Chem. Phys. 21 18179Google Scholar

    [9]

    Suleiman R K 2019 J. Adhes. Sci. Technol. 34 1Google Scholar

    [10]

    Huang H W, Sheng X X, Tian Y Q, Zhang L, Chen Y, Zhang X Y 2020 Ind. Eng. Chem. Res. 59 15424Google Scholar

    [11]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [12]

    Kyhl L, Nielsen S F, Cabo A G, Cassidy A, Miwa J A, Hornekaer L 2015 Faraday Discuss. 180 495Google Scholar

    [13]

    Wang M, Tang M, Chen S, Ci H, Wang K, Shi L, Lin L, Ren H, Shan J, Gao P 2017 Adv. Mater. 29 1703882Google Scholar

    [14]

    Ding R, Li W H, Wang X, Gui T J, Li B J, Han P, Tian H W, Liu A, Wang X, Liu X J, Gao X, Wang W, Song L Y 2018 J. Alloys Compd. 764 1039Google Scholar

    [15]

    Krishnan M A, Aneja K S, Shaikh A, Bohm S, Raja V S 2018 RSC Adv. 8 499Google Scholar

    [16]

    Chauhan D S, Quraishi M A, Ansari K R, Saleh T A 2020 Prog. Org. Coat. 147 105741Google Scholar

    [17]

    Ollik K, Lieder M 2020 Coatings 10 883Google Scholar

    [18]

    Lin Y T, Don T M, Wong C J, Meng F C, Lin Y J, Lee S Y, Lee C F, Chiu W Y 2019 Surf. Coat. Technol. 374 1128Google Scholar

    [19]

    Parhizkar N, Shahrabi T, Ramezanzadeh B 2017 Corros. Sci. 123 55Google Scholar

    [20]

    Ding R, Wang X, Jiang J, Gui T, Li W 2017 J. Mater. Eng. Perform. 764 3319Google Scholar

    [21]

    Xiong L, Liu J, Li Y, Li S, Yu M 2019 Prog. Org. Coat. 135 228Google Scholar

    [22]

    Qing F, Shen C, Jia R, Zhan L, Li X 2017 MRS Bull. 42 819Google Scholar

    [23]

    Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312Google Scholar

    [24]

    Chen S S, Brown L, Levendorf M, Cai W W, Ju S Y, Edgeworth J, Li X S, Magnuson C W, Velamakanni A, Piner R D, Kang J Y, Park J, Ruoff R S 2011 ACS Nano 5 1321Google Scholar

    [25]

    Kirkland N T, Schiller T, Medhekar N, Birbilis N 2012 Corros. Sci. 56 1Google Scholar

    [26]

    Pu N W, Shi G N, Liu Y M, Sun X, Chang J K, Sun C L, Ger M D, Chen C Y, Wang P C, Peng Y Y 2015 J. Power Sources 282 248Google Scholar

    [27]

    Zhu M, Du Z, Yin Z, Zhou W, Liu Z 2016 ACS Appl. Mater. Interfaces 8 502Google Scholar

    [28]

    张晓波, 青芳竹, 李雪松 2019 物理学报 68 096801Google Scholar

    Zhang X B, Qing F Z, Li X S 2019 Acta Phys. Sin. 68 096801Google Scholar

    [29]

    Zheng Z, Liu Y, Bai Y, Zhang J, Han Z, Ren L 2016 Colloids Surf., A 500 64Google Scholar

    [30]

    Yang S, Zhu S, Hong R 2020 Coatings 10 1215Google Scholar

    [31]

    Xu H, Zang J, Yuan Y, Tian P, Wang Y 2019 Appl. Surf. Sci. 492 199Google Scholar

    [32]

    Xiao F, Qian C, Guo M, Wang J, Yan X, Li H, Yue L 2018 Prog. Org. Coat. 125 79Google Scholar

    [33]

    He W T, Zhu L Q, Chen H N, Nan H Y, Li W P, Liu H C, Wang Y 2013 Appl. Surf. Sci. 279 416Google Scholar

    [34]

    Szeptycka B, Gajewska-Midzialek A, Babul T 2016 J. Mater. Eng. Perform. 25 3134Google Scholar

    [35]

    Feng L, Zhang S T, Qiang Y J, Xu Y, Guo L, Madkour L H, Chen S J 2018 Materials 11 1042Google Scholar

    [36]

    Bokati K S, Dehghanian C 2018 J. Environ. Chem. Eng. 6 1613Google Scholar

    [37]

    Guo L, Obot I B, Zheng X W, Shen X, Qiang Y J, Kaya S, Kaya C 2017 Appl. Surf. Sci. 406 301Google Scholar

    [38]

    Hippolyte C N, Serge B Y, Didier D G, Juan C, Albert T 2018 Int. J. Biol. Chem. Sci. 12 1008Google Scholar

    [39]

    Cen H, Chen Z 2021 Colloids Surf., A. 615 126216Google Scholar

    [40]

    Baig N, Chauhan D S, Saleh T A, Quraishi M A 2019 New J. Chem. 43 2328Google Scholar

    [41]

    Zhao D, Wang M, Xu Y, Zhang Z, Ge X 2014 Surf. Coat. Technol. 238 15Google Scholar

    [42]

    Ye Y, Chen H, Zou Y, Ye Y, Zhao H 2020 Corros. Sci. 174 108825Google Scholar

    [43]

    Kasaeian M, Ghasemi E, Ramezanzadeh B, Mahdavian M, Bahlakeh G 2018 Corros. Sci. 145 119Google Scholar

    [44]

    Cui G, Bi Z, Zhang R, Liu J, Yu X, Li Z 2019 Chem. Eng. J. 373 104Google Scholar

    [45]

    Banhart F, Kotakoski J, Krasheninnikov A V 2011 ACS Nano 5 26Google Scholar

    [46]

    Rhodes D, Chae S H, Ribeiro-Palau R, Hone J 2019 Nat. Mater. 18 541Google Scholar

    [47]

    Hong J, Lee J B, Lee S, Seo J, Lee H, Park J Y, Ahn J H, Il Seo T, Lee T, Lee H B R 2016 NPG Asia Mater. 8 e262Google Scholar

    [48]

    Ji D, Wen X, Foller T, You Y, Joshi R 2020 Nanomaterials 10 2511Google Scholar

    [49]

    Prasai D, Tuberquia J C, Harl R R, Jennings G K, Bolotin K I 2012 ACS Nano 6 1102Google Scholar

    [50]

    Zhou F, Li Z T, Shenoy G J, Li L, Liu H T 2013 ACS Nano 7 6939Google Scholar

    [51]

    Hsieh Y P, Hofmann M, Chang K W, Jhu J G, Li Y Y, Chen K Y, Yang C C, Chang W S, Chen L C 2014 ACS Nano 8 443Google Scholar

    [52]

    Zhao Z, Hou T, Wu N, Jiao S, Zhou K, Yin J, Suk J, Cui X, Zhang M, Li S, Qu Y, Xie W, Li X B, Zhao C, Fu Y, Hong R D, Guo S, Lin D, Cai W, Mai W, Luo Z, Tian Y, Lai Y, Liu Y, Colombo L, Hao Y 2021 Nano Lett. 21 1161Google Scholar

    [53]

    Liu T, Zhao H C, Mao F X, Li J Y 2019 Mater. Res. Express 6 125619Google Scholar

    [54]

    Jun Y S, Sy S, Ahn W, Zarrin H, Rasen L, Tjandra R, Amoli B M, Zhao B X, Chiu G, Yu A P 2015 Carbon 95 653Google Scholar

    [55]

    Guerrero-Contreras J, Caballero-Briones F 2015 Mater. Chem. Phys. 153 209Google Scholar

    [56]

    Krishnamoorthy K, Veerapandian M, Yun K, Kim S J 2013 Carbon 53 38Google Scholar

    [57]

    Sato J, Higurashi K, Fukuda K, Sugimoto W 2011 Electrochemistry 79 337Google Scholar

    [58]

    Ramezanzadeh B, Bahlakeh G, Moghadam M H M, Miraftab R 2018 Chem. Eng. J. 335 737Google Scholar

    [59]

    Um J G, Jun Y S, Alhumade H, Krithivasan H, Lui G, Yu A P 2018 RSC Adv. 8 17091Google Scholar

    [60]

    Liao Z J, Zhang T C, Qiao S, Zhang L Y H 2017 Environ. Mater. Sci. 94 012072Google Scholar

    [61]

    Cai K W, Zuo S X, Luo S P, Yao C, Liu W J, Ma J F, Mao H H, Li Z Y 2016 RSC Adv. 6 95965Google Scholar

    [62]

    Kumar C S, Sumitesh D 2017 J. Nanosci. Nanotechnol. 17 2130Google Scholar

    [63]

    Gupta R K, Malviya M, Ansari K R, Lgaz H, Quraishi M A 2019 Mater. Chem. Phys. 236 121727Google Scholar

    [64]

    Haruna K, Saleh T A, Obot I B, Umoren S A 2019 Prog. Org. Coat. 128 157Google Scholar

    [65]

    Du P, Wang J, Zhao H, Liu G, Wang L 2019 Dalton Trans. 48 13064Google Scholar

    [66]

    Zhang Z, Qi J, Zhao M, Shang N, Cheng Y, Qiao R, Zhang Z, Ding M, Li X, Liu K, Xu X, Liu K, Liu C, Wu M 2020 Chin. Phys. Lett. 37 108101Google Scholar

    [67]

    Wang Y, Qing F, Jia Y, Duan Y, Shen C, Hou Y, Niu Y, Shi H, Li X 2021 Chem. Eng. J. 405 127014Google Scholar

    [68]

    孙垚垚, 宋家乐, 郑斌, 曾煜, 胡颖, 李炜光 2021 无机盐工业 https://kns.cnki.net/kcms/detail/12.1069.TQ.20210129.1525.006.html

    Sun Y Y, Sun J L, Zheng B, Zeng Y, Hu Y, Li W G 2021 Inorg. Chem. Ind.

    [69]

    Yang X B, Cui D W, Qu Y 2017 Electron. Compon. Mater. 36 83Google Scholar

  • 图 1  石墨烯防腐作用机理 (a) 阻隔作用[13]; (b) 屏蔽作用[17]; (c) 缓蚀作用[18]; (d) 加固作用[19]; (e) 阴极保护作用[20]; (f) 自修复作用[21]

    Figure 1.  Anticorrosion mechanism of graphene: (a) Barrier effect[13]; (b) shielding effect[17]; (c) corrosion inhibition synergy[18]; (d) enhancement of coating adhesion[19]; (e) cathodic protection[20]; (f) self-healing effect[21].

    图 2  CVD石墨烯防腐性能[24] (a) 石墨烯作为化学惰性扩散阻挡层示意图; (b) 硬币经过H2O2浸泡(30%, 2 min)后的照片; (c) 带有和不带有石墨烯涂层的铜和铜镍合金在空气中退火(200 °C, 4 h)的照片

    Figure 2.  Performance of CVD graphene as an anticorrosion layer[24]: (a) Schematics of graphene as a chemically inert diffusion barrier; (b) photograph showing graphene coated (upper) and uncoated (lower) penny after H2O2 treatment (30%, 2 min); (c) photographs of Cu and Cu/Ni foils with and without graphene coating taken before and after annealing in air (200 °C, 4 h).

    图 3  不锈钢球包覆石墨烯涂层制备过程示意图[31]

    Figure 3.  Schematics of the preparation of graphene coated stainless steel balls[31].

    图 4  溶液中FGO对碳钢表面的缓蚀机理示意图[39]

    Figure 4.  Schematics of inhibition mechanism on carbon steel surface for FGO in solution[39].

    图 5  DETA, GO 和DETA-GO的HOMO和LUMO分布图[40] (a) HOMO图; (b) LUMO图

    Figure 5.  HOMO and LUMO distribution maps of DETA, GO and DETA-GO[40]: (a) LUMO; (b) HOMO.

    图 6  装有BTA的覆盆子状空心聚合物微球的制备示意图[41]

    Figure 6.  Schematics of the preparation of raspberry-like hollow polymeric microspheres loaded with BTA[41].

    图 7  石墨烯基纳米容器的制备工艺[42]

    Figure 7.  Preparation process of graphene-based nanocontainer[42].

    图 8  8-PG-BTA/EP涂层的防腐蚀机理[42] (a) 完整涂层; (b) 缺陷; (c) 腐蚀反应; (d) 自愈行为

    Figure 8.  Corrosion protection mechanism of 8-PG-BTA/EP coating[42]: (a) Intact coating; (b) defect; (c) corrosion reaction; (d) self-healing behavior.

    图 9  石墨烯薄膜的缺陷促进金属腐蚀[14]

    Figure 9.  Defects of graphene films promote the corrosion of metals[14].

    图 10  在单层石墨烯(SLG)和多层石墨烯(FLG)中进行分子扩散的原子尺度模拟示意图[52] (a) 水分子在有缺陷的SLG中扩散需要的能量和示意图; (b) 氧气和水分子等物质易在SLG中扩散并使Cu表面氧化的情况示意图; (c) 水分子在有缺陷的双层石墨烯(BLG)中扩散需要的能量和示意图; (d) 示意图显示即使三层石墨烯包含多个晶界(GB)缺陷, 氧气和水分子也难以穿过多晶三层石墨烯并与下面的Cu表面接触

    Figure 10.  Atomic-scale simulations of molecular diffusion through SLG and FLG[52]: (a) Schematics and the calculated energy barrier for a water molecule to diffuse through a defective SLG; (b) schematic showing the easiness of reactive species such as oxygen and water molecules to diffuse through SLG and oxidize the Cu surface; (c) schematics and the calculated energy barrier for a water molecule to diffuse through a defective BLG; (d) schematic showing the difficulties for oxygen and water molecules to diffuse through polycrystalline trilayer graphene and contact with the underlying Cu surface, even when the trilayer graphene contains multiple GB defects.

    图 11  (a)−(c) 在含有0.1 mol/L KCl溶液的5 mmol/L K3[Fe(CN)6]溶液中通过循环伏安法修饰玻碳电极(GCE)上的GO样品(S-1至S-6); (d) 具有不同氧化水平的样品的Ipc[56]

    Figure 11.  (a)−(c) Cyclic voltammetry of GO samples (S-1 to S-6) modified on GCE in 5 mmol/L K3[Fe(CN)6] containing 0.1 mol/L KCl solution; (d) Ipc of the samples with different oxidation levels[56].

    图 12  PU/GnP复合材料的横截面SEM图像(质量分数为1%的GnP, 其中(a)−(d)为低倍率; (e)−(f)为高倍率) (a), (e) PU/H100; (b), (f) PU/M25; (c), (g) PU/M5; (d), (h) PU/C750[59]

    Figure 12.  Cross-sectional SEM images for the PU/GnP composites (GnP with weight fraction of 1%, (a)−(d) low magnification, (e)−(f) high magnification): (a), (e) PU/H100; (b), (f) PU/M25; (c), (g) PU/M5; (d), (h) PU/C750[59].

    图 13  腐蚀介质在含有质量分数为1% GnP的PU复合材料层中的渗透示意图[59]

    Figure 13.  Schematic model for the permeation of the corrosive agent passing through the coating layer of the PU composite containing GnP with weight fraction of 1%[59].

  • [1]

    Pan H 2018 MATEC Web. Conf. 207 03010Google Scholar

    [2]

    Ma L W, Ren C H, Wang J K, Liu T, Yang H, Wang Y J, Huang Y, Zhang D W 2020 Chem. Eng. J. DOI: 10.1016/j.cej.2020.127854Google Scholar

    [3]

    Sadawy M, Saad S, Abdel-Karim R 2020 Trans. Nonferrous Met. Soc. China 30 2067Google Scholar

    [4]

    Glover C F, Cain T W, Scully J R 2019 Corros. Sci. 149 195Google Scholar

    [5]

    Tasic Z Z, Mihajlovic M B P, Radovanovic M B, Simonovic A T, Antonijevic M M 2018 J. Mol. Struct. 1159 46Google Scholar

    [6]

    Qiang Y J, Zhang S T, Xu S Y, Li W P 2016 J. Colloid Interface Sci. 472 52Google Scholar

    [7]

    Peng T Y, Xiao R H, Rong Z Y, Liu H B, Hu Q Y, Wang S H, Li X, Zhang J M 2020 Chem. Asian J. 15 3915Google Scholar

    [8]

    Tang H Y, Qu Z P, Wang L, Ye H Y, Fan X J, Zhang G Q 2019 Phys. Chem. Chem. Phys. 21 18179Google Scholar

    [9]

    Suleiman R K 2019 J. Adhes. Sci. Technol. 34 1Google Scholar

    [10]

    Huang H W, Sheng X X, Tian Y Q, Zhang L, Chen Y, Zhang X Y 2020 Ind. Eng. Chem. Res. 59 15424Google Scholar

    [11]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [12]

    Kyhl L, Nielsen S F, Cabo A G, Cassidy A, Miwa J A, Hornekaer L 2015 Faraday Discuss. 180 495Google Scholar

    [13]

    Wang M, Tang M, Chen S, Ci H, Wang K, Shi L, Lin L, Ren H, Shan J, Gao P 2017 Adv. Mater. 29 1703882Google Scholar

    [14]

    Ding R, Li W H, Wang X, Gui T J, Li B J, Han P, Tian H W, Liu A, Wang X, Liu X J, Gao X, Wang W, Song L Y 2018 J. Alloys Compd. 764 1039Google Scholar

    [15]

    Krishnan M A, Aneja K S, Shaikh A, Bohm S, Raja V S 2018 RSC Adv. 8 499Google Scholar

    [16]

    Chauhan D S, Quraishi M A, Ansari K R, Saleh T A 2020 Prog. Org. Coat. 147 105741Google Scholar

    [17]

    Ollik K, Lieder M 2020 Coatings 10 883Google Scholar

    [18]

    Lin Y T, Don T M, Wong C J, Meng F C, Lin Y J, Lee S Y, Lee C F, Chiu W Y 2019 Surf. Coat. Technol. 374 1128Google Scholar

    [19]

    Parhizkar N, Shahrabi T, Ramezanzadeh B 2017 Corros. Sci. 123 55Google Scholar

    [20]

    Ding R, Wang X, Jiang J, Gui T, Li W 2017 J. Mater. Eng. Perform. 764 3319Google Scholar

    [21]

    Xiong L, Liu J, Li Y, Li S, Yu M 2019 Prog. Org. Coat. 135 228Google Scholar

    [22]

    Qing F, Shen C, Jia R, Zhan L, Li X 2017 MRS Bull. 42 819Google Scholar

    [23]

    Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312Google Scholar

    [24]

    Chen S S, Brown L, Levendorf M, Cai W W, Ju S Y, Edgeworth J, Li X S, Magnuson C W, Velamakanni A, Piner R D, Kang J Y, Park J, Ruoff R S 2011 ACS Nano 5 1321Google Scholar

    [25]

    Kirkland N T, Schiller T, Medhekar N, Birbilis N 2012 Corros. Sci. 56 1Google Scholar

    [26]

    Pu N W, Shi G N, Liu Y M, Sun X, Chang J K, Sun C L, Ger M D, Chen C Y, Wang P C, Peng Y Y 2015 J. Power Sources 282 248Google Scholar

    [27]

    Zhu M, Du Z, Yin Z, Zhou W, Liu Z 2016 ACS Appl. Mater. Interfaces 8 502Google Scholar

    [28]

    张晓波, 青芳竹, 李雪松 2019 物理学报 68 096801Google Scholar

    Zhang X B, Qing F Z, Li X S 2019 Acta Phys. Sin. 68 096801Google Scholar

    [29]

    Zheng Z, Liu Y, Bai Y, Zhang J, Han Z, Ren L 2016 Colloids Surf., A 500 64Google Scholar

    [30]

    Yang S, Zhu S, Hong R 2020 Coatings 10 1215Google Scholar

    [31]

    Xu H, Zang J, Yuan Y, Tian P, Wang Y 2019 Appl. Surf. Sci. 492 199Google Scholar

    [32]

    Xiao F, Qian C, Guo M, Wang J, Yan X, Li H, Yue L 2018 Prog. Org. Coat. 125 79Google Scholar

    [33]

    He W T, Zhu L Q, Chen H N, Nan H Y, Li W P, Liu H C, Wang Y 2013 Appl. Surf. Sci. 279 416Google Scholar

    [34]

    Szeptycka B, Gajewska-Midzialek A, Babul T 2016 J. Mater. Eng. Perform. 25 3134Google Scholar

    [35]

    Feng L, Zhang S T, Qiang Y J, Xu Y, Guo L, Madkour L H, Chen S J 2018 Materials 11 1042Google Scholar

    [36]

    Bokati K S, Dehghanian C 2018 J. Environ. Chem. Eng. 6 1613Google Scholar

    [37]

    Guo L, Obot I B, Zheng X W, Shen X, Qiang Y J, Kaya S, Kaya C 2017 Appl. Surf. Sci. 406 301Google Scholar

    [38]

    Hippolyte C N, Serge B Y, Didier D G, Juan C, Albert T 2018 Int. J. Biol. Chem. Sci. 12 1008Google Scholar

    [39]

    Cen H, Chen Z 2021 Colloids Surf., A. 615 126216Google Scholar

    [40]

    Baig N, Chauhan D S, Saleh T A, Quraishi M A 2019 New J. Chem. 43 2328Google Scholar

    [41]

    Zhao D, Wang M, Xu Y, Zhang Z, Ge X 2014 Surf. Coat. Technol. 238 15Google Scholar

    [42]

    Ye Y, Chen H, Zou Y, Ye Y, Zhao H 2020 Corros. Sci. 174 108825Google Scholar

    [43]

    Kasaeian M, Ghasemi E, Ramezanzadeh B, Mahdavian M, Bahlakeh G 2018 Corros. Sci. 145 119Google Scholar

    [44]

    Cui G, Bi Z, Zhang R, Liu J, Yu X, Li Z 2019 Chem. Eng. J. 373 104Google Scholar

    [45]

    Banhart F, Kotakoski J, Krasheninnikov A V 2011 ACS Nano 5 26Google Scholar

    [46]

    Rhodes D, Chae S H, Ribeiro-Palau R, Hone J 2019 Nat. Mater. 18 541Google Scholar

    [47]

    Hong J, Lee J B, Lee S, Seo J, Lee H, Park J Y, Ahn J H, Il Seo T, Lee T, Lee H B R 2016 NPG Asia Mater. 8 e262Google Scholar

    [48]

    Ji D, Wen X, Foller T, You Y, Joshi R 2020 Nanomaterials 10 2511Google Scholar

    [49]

    Prasai D, Tuberquia J C, Harl R R, Jennings G K, Bolotin K I 2012 ACS Nano 6 1102Google Scholar

    [50]

    Zhou F, Li Z T, Shenoy G J, Li L, Liu H T 2013 ACS Nano 7 6939Google Scholar

    [51]

    Hsieh Y P, Hofmann M, Chang K W, Jhu J G, Li Y Y, Chen K Y, Yang C C, Chang W S, Chen L C 2014 ACS Nano 8 443Google Scholar

    [52]

    Zhao Z, Hou T, Wu N, Jiao S, Zhou K, Yin J, Suk J, Cui X, Zhang M, Li S, Qu Y, Xie W, Li X B, Zhao C, Fu Y, Hong R D, Guo S, Lin D, Cai W, Mai W, Luo Z, Tian Y, Lai Y, Liu Y, Colombo L, Hao Y 2021 Nano Lett. 21 1161Google Scholar

    [53]

    Liu T, Zhao H C, Mao F X, Li J Y 2019 Mater. Res. Express 6 125619Google Scholar

    [54]

    Jun Y S, Sy S, Ahn W, Zarrin H, Rasen L, Tjandra R, Amoli B M, Zhao B X, Chiu G, Yu A P 2015 Carbon 95 653Google Scholar

    [55]

    Guerrero-Contreras J, Caballero-Briones F 2015 Mater. Chem. Phys. 153 209Google Scholar

    [56]

    Krishnamoorthy K, Veerapandian M, Yun K, Kim S J 2013 Carbon 53 38Google Scholar

    [57]

    Sato J, Higurashi K, Fukuda K, Sugimoto W 2011 Electrochemistry 79 337Google Scholar

    [58]

    Ramezanzadeh B, Bahlakeh G, Moghadam M H M, Miraftab R 2018 Chem. Eng. J. 335 737Google Scholar

    [59]

    Um J G, Jun Y S, Alhumade H, Krithivasan H, Lui G, Yu A P 2018 RSC Adv. 8 17091Google Scholar

    [60]

    Liao Z J, Zhang T C, Qiao S, Zhang L Y H 2017 Environ. Mater. Sci. 94 012072Google Scholar

    [61]

    Cai K W, Zuo S X, Luo S P, Yao C, Liu W J, Ma J F, Mao H H, Li Z Y 2016 RSC Adv. 6 95965Google Scholar

    [62]

    Kumar C S, Sumitesh D 2017 J. Nanosci. Nanotechnol. 17 2130Google Scholar

    [63]

    Gupta R K, Malviya M, Ansari K R, Lgaz H, Quraishi M A 2019 Mater. Chem. Phys. 236 121727Google Scholar

    [64]

    Haruna K, Saleh T A, Obot I B, Umoren S A 2019 Prog. Org. Coat. 128 157Google Scholar

    [65]

    Du P, Wang J, Zhao H, Liu G, Wang L 2019 Dalton Trans. 48 13064Google Scholar

    [66]

    Zhang Z, Qi J, Zhao M, Shang N, Cheng Y, Qiao R, Zhang Z, Ding M, Li X, Liu K, Xu X, Liu K, Liu C, Wu M 2020 Chin. Phys. Lett. 37 108101Google Scholar

    [67]

    Wang Y, Qing F, Jia Y, Duan Y, Shen C, Hou Y, Niu Y, Shi H, Li X 2021 Chem. Eng. J. 405 127014Google Scholar

    [68]

    孙垚垚, 宋家乐, 郑斌, 曾煜, 胡颖, 李炜光 2021 无机盐工业 https://kns.cnki.net/kcms/detail/12.1069.TQ.20210129.1525.006.html

    Sun Y Y, Sun J L, Zheng B, Zeng Y, Hu Y, Li W G 2021 Inorg. Chem. Ind.

    [69]

    Yang X B, Cui D W, Qu Y 2017 Electron. Compon. Mater. 36 83Google Scholar

  • [1] Hu Xiao-Chuan, Liu Yang-Xi, Chu Kun, Duan Chao-Feng. Effect of amorphous carbon film on secondary electron emission of metal. Acta Physica Sinica, 2024, 73(4): 047901. doi: 10.7498/aps.73.20231604
    [2] Zhang Yi-Fei, Liu Yuan, Mei Jia-Dong, Wang Jun-Zhuan, Wang Xiao-Mu, Shi Yi. Quaternary nanoparticle array antenna for graphene/silicon near-infrared detector. Acta Physica Sinica, 2024, 73(6): 064202. doi: 10.7498/aps.73.20231657
    [3] Liao Qing, Li Bing-Sheng, Ge Fang-Fang, Zhang Hong-Peng, Shen Tie-Long, Mao Xue-Li, Wang Ren-Da, Sheng Yan-Bin, Chang Hai-Long, Wang Zhi-Guang, Xu Shuai, Chen Li-Ming, He Xiao-Xun. Stability and corrosion behavior of AlOx coating on T91 steel and SIMP steel in static liquid Pb-Bi eutectic at 600 ℃. Acta Physica Sinica, 2022, 71(15): 156103. doi: 10.7498/aps.71.20220356
    [4] Deng Xu-Liang, Ji Xian-Fei, Wang De-Jun, Huang Ling-Qin. First principle study on modulating of Schottky barrier at metal/4H-SiC interface by graphene intercalation. Acta Physica Sinica, 2022, 71(5): 058102. doi: 10.7498/aps.71.20211796
    [5] Hu Bao-Jing, Huang Ming, Li Peng, Yang Jing-Jing. Multiband plasmon-induced transparency based on nanometals-graphene hybrid model. Acta Physica Sinica, 2020, 69(17): 174201. doi: 10.7498/aps.69.20200200
    [6] Jiang Xiao-Wei, Wu Hua, Yuan Shou-Cai. Enhancement of graphene three-channel optical absorption based on metal grating. Acta Physica Sinica, 2019, 68(13): 138101. doi: 10.7498/aps.68.20182173
    [7] Chen Cai-Yun, Liu Jin-Xing, Zhang Xiao-Min, Li Jin-Long, Ren Ling-Ling, Dong Guo-Cai. Coverage measurement of graphene film on metallic substrate using scanning electron microscopy. Acta Physica Sinica, 2018, 67(7): 076802. doi: 10.7498/aps.67.20172654
    [8] Pu Xiao-Qing, Wu Jing, Guo Qiang, Cai Jian-Zhen. Theoretical study on ohmic contact between graphene and metal electrode. Acta Physica Sinica, 2018, 67(21): 217301. doi: 10.7498/aps.67.20181479
    [9] Gao Jian, Sang Tian, Li Jun-Lang, Wang La. Double-channel absorption enhancement of graphene using narrow groove metal grating. Acta Physica Sinica, 2018, 67(18): 184210. doi: 10.7498/aps.67.20180848
    [10] Chen Hao, Zhang Xiao-Xia, Wang Hong, Ji Yue-Hua. Near-infrared absorption of graphene-metal nanostructure based on magnetic polaritons. Acta Physica Sinica, 2018, 67(11): 118101. doi: 10.7498/aps.67.20180196
    [11] Guo Hui, Lu Hong-Liang, Huang Li, Wang Xue-Yan, Lin Xiao, Wang Ye-Liang, Du Shi-Xuan, Gao Hong-Jun. Intercalation and its mechanism of high quality large area graphene on metal substrate. Acta Physica Sinica, 2017, 66(21): 216803. doi: 10.7498/aps.66.216803
    [12] Ye Feng-Xia, Chen Yan, Yu Peng, Luo Qiang, Qu Shou-Jiang, Shen Jun. Structured analysis of iron-based amorphous alloy coating deposited by AC-HVAF spray. Acta Physica Sinica, 2014, 63(7): 078101. doi: 10.7498/aps.63.078101
    [13] Li Feng, Xiao Chuan-Yun, Kan Er-Jun, Lu Rui-Feng, Deng Kai-Ming. Density functional study on the different behaviors of Pd and Pt coating on graphene. Acta Physica Sinica, 2014, 63(17): 176802. doi: 10.7498/aps.63.176802
    [14] Yu Hai-Ling, Zhu Jia-Qi, Cao Wen-Xin, Han Jie-Cai. Process in preparation of metal-catalyzed graphene. Acta Physica Sinica, 2013, 62(2): 028201. doi: 10.7498/aps.62.028201
    [15] Li Wen-Sheng, Luo Shi-Jun, Huang Hai-Ming, Zhang Qin, Fu Yan-Hua. The design of tank coating based on photonic crystal. Acta Physica Sinica, 2012, 61(16): 164102. doi: 10.7498/aps.61.164102
    [16] Preparation of Fe-based thick amorphous composite. Acta Physica Sinica, 2011, 60(2): 027103. doi: 10.7498/aps.60.027103
    [17] Yang Guang-Jie, Kong Fan-Min, Li Kang, Mei Liang-Mo. Several methods for dealing with metal in FDTD. Acta Physica Sinica, 2007, 56(7): 4252-4255. doi: 10.7498/aps.56.4252
    [18] Zhang Shuan-Qin, Shi Yun-Long, Huang Chang-Geng, Lian Chang-Chun. Design of spectral reflective properties of the stealth coating. Acta Physica Sinica, 2007, 56(9): 5508-5512. doi: 10.7498/aps.56.5508
    [19] Zhang Yong-Kang, Kong De-Jun, Feng Ai-Xin, Lu Jin-Zhong, Ge Tao. Study on the detection of interfacial bonding strength of coatings (Ⅱ): detecting system of bonding strength. Acta Physica Sinica, 2006, 55(11): 6008-6012. doi: 10.7498/aps.55.6008
    [20] Liu Xiao-Dong, Li Shu-Guang, Hou Lan-Tian, Wang Hui-Tian. . Acta Physica Sinica, 2002, 51(9): 2123-2127. doi: 10.7498/aps.51.2123
Metrics
  • Abstract views:  14002
  • PDF Downloads:  537
  • Cited By: 0
Publishing process
  • Received Date:  23 February 2021
  • Accepted Date:  02 March 2021
  • Available Online:  15 March 2021
  • Published Online:  05 May 2021

/

返回文章
返回