Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preparation of iron diselenide/reduced graphene oxide composite and its application in dyesensitized solar cells

Liu Xue-Wen Zhu Chong-Yang Dong Hui Xu Feng Sun Li-Tao

Citation:

Preparation of iron diselenide/reduced graphene oxide composite and its application in dyesensitized solar cells

Liu Xue-Wen, Zhu Chong-Yang, Dong Hui, Xu Feng, Sun Li-Tao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In recent years, dye-sensitized solar cells (DSSCs) have attracted much attention because of their easy fabrication, good flexibility low cost and relatively high efficiency. As a crucial component, the function of counter electrode (CE) is to collect the electrons from external circuits and transfer them to electrolyte by catalyzing the reduction of I3- into I-. Platinum (Pt) is a conventional material of CE in DSSCs due to its high conductivity and outstanding catalytic activity towards the reduction of triiodide (I3-). However, the high cost and low abundance of Pt restrict the commercial application of DSSCs. Moreover, Pt could be dissolved slowly in the I-/I3- redox electrolyte, which will deteriorate the long term stability of DSSCs. Therefore, it is necessary to explore novel material with high conductivity, catalytic activity and stability to replace Pt. In this paper, with Fe(NO3)39H2O and graphene oxide (GO) serving as raw materials and deionized water as the solvent, we synthesize iron diselenide (FeSe2) nanorods (with diameters in a range of about 100-200 nm)/reduced graphene oxide (rGO) composite through a facile hydrothermal method and use the composite as CE material of DSSCs for the first time. The structure and morphology of FeSe2/rGO are characterized by using X-ray diffraction (XRD), Raman spectrum, field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The XRD pattern shows that the FeSe2 is typically orthorhombic phase. The SEM images show that the FeSe2 has a structure of nanonods and can be attached to the surface of rGO closely The surface of FeSe2/rGO composite is rough and exhibits a porous structure. The TEM image shows that the FeSe2 has a high degree of crystallinity and orientation. To evaluate the catalytic activity and conductivity of FeSe2/rGO, we perform cyclic voltammetry (CV) measurements, electrochemical impedance spectroscopy and obtain Tafel polarization curves for FeSe2/rGO electrode and also for Pt, FeSe2 and rGO electrodes for comparison. The results indicate that the CE based on FeSe2/rGO composites has the lowest peak-to-peak voltage separation (E_{pp}) charge transfer resistance (Rct) and series resistance (Rs) in the four different CEs, suggesting that the FeSe2/rGO CE has an excellent electrocatalytic performance for the reduction I3-. The current density-voltage (J-V) curves of DSSCs with different CEs under the illumination of 1 sun (100 mW cm-2) show that the cell with FeSe2/rGO CE has an open-circuit voltage (Voc) of 0.727 V, a short-circuit current (Jsc) of 18.94 mA cm-2, a fill factor (FF) of 0.65 and an excellent power conversion efficiency (PCE) of 8.90%, which is a notable improvement compared with the PCE of the cell with an FeSe2 CE (7.91%) and an rGO CE (5.24%). It can be attributed to the synergetic effects between the FeSe2 nanorods and rGO which eventually improve the PCE of DSSC We also conducte the experiments on the electrochemical stability of FeSe2/rGO CE by sequential CV measurements the result indicates that the FeSe2/rGO composite has a better stability than Pt in I-/I3- electrolyte In summary, we synthesize a novel FeSe2/rGO conductive catalyst. This hybrid material possesses the features of FeSe2 and rGO, exhibiting both highly catalytic activity and high conductivity Therefore, the low-cost and high-performance FeSe2/rGO composite can be a promising CE material to replace Pt in the large-scale industrial production of DSSCs.
      Corresponding author: Sun Li-Tao, slt@seu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos 61574034, 51372039, 11525415, 51420105003).
    [1]

    O'regan B, Grtzel M 1991 Nature 353 737

    [2]

    Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod B F, Ashari-Astani N, Tavernelli I, Rothlisberger U, Nazeeruddin M, Grtzel M 2014 Nature Chem. 6 242

    [3]

    Xu F, Sun L 2011 Energy Environ. Sci. 4 818

    [4]

    Li P J, Chen K, Chen Y F, Wang Z G, Hao X, Liu J B, He J R, Zhang W L 2012 Chin. Phys. B 21 11810

    [5]

    Lee W J, Ramasamy E, Lee D Y, Song J S 2008 Sol. Energy Mater. Sol. Cells 92 814

    [6]

    Kwon J, Ganapathy V, Kim Y H, Song K D, Park H G, Jun Y, Yoo P J, Park J H 2013 Nanoscale 5 7838

    [7]

    Thomas S, Deepak T G, Anjusree G S, Arun T A, Nair S V, Nair A S 2014 J. Mater. Chem. A 2 4474

    [8]

    Huang L Q, Zhou L Y, Yu W, Yang D, Zhang J, Li C 2015 Acta Phys. Sin. 64 038103 (in Chinese) [黄林泉, 周玲玉, 于为, 杨栋, 张坚, 李灿 2015 物理学报 64 038103]

    [9]

    Wu M, Lin X, Wang T, Qiu J, Ma T 2011 Energy Environ. Sci. 4 2308

    [10]

    Burschka J, Brault V, Ahmad S, Breau L, Nazeeruddin M K, Marsan B, Zakeeruddin S M, Grtzel M 2012 Energy Environ. Sci. 5 6089

    [11]

    Li Z, Gong F, Zhou G, Wang Z S 2013 J. Phys. Chem. C 117 6561

    [12]

    Bi E, Chen H, Yang X, Peng W, Grtzel M, Han L 2014 Energy Environ. Sci. 7 2637

    [13]

    Tai S Y, Liu C J, Chou S W, Chien S S, Lin J Y, Lin T W 2012 J. Mater. Chem. 22 24753

    [14]

    Zhou H, Yin J, Nie Z, Yang Z, Li D, Wang J, Liu X, Jin C, Zhang X, Ma T 2016 J. Mater. Chem. A 4 67

    [15]

    Huang S, He Q, Chen W, Qiao Q, Zai J, Qian X 2015 Chem. Eur. J. 21 4085

    [16]

    Wang H, Hu Y H 2012 Energy Environ. Sci. 5 8182

    [17]

    Hummers W S, Offeman R E 1958 J. Am. Chem. Soc. 80 1339

    [18]

    Bi H, Xie X, Yin K, Zhou Y, Wan S, Ruoff R S, Sun L 2014 J. Mater. Chem. A 2 1652

    [19]

    Ito S, Murakami T N, Comte P, Liska P, Grtzel C, Nazeeruddin M K, Grtzel M 2008 Thin Solid films 516 4613

    [20]

    Shin H J, Kim K K, Benayad A, Yoon S M, Park H K, Jung I S, Jin M H, Jeong H K, Kim J M, Choi J Y, Lee Y H 2009 Adv. Funct. Mater. 19 1987

    [21]

    Stankovich S, Dikin D A, Piner R D, Khlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S T, Ruoff R S 2007 Carbon 45 1558

    [22]

    Boschloo G, Hagfeldt A 2009 Acc. Chem. Res. 42 1819

    [23]

    Li P J, Chen K, Chen Y F, Wang Z G, Hao X, Liu J B, He J R, Zhang W L 2012 Chin. Phys. B 21 118101

    [24]

    Zhu C, Min H, Xu F, Chen J, Dong H, Tong L, Zhu Y, Sun L 2015 RSC Adv. 5 85822

    [25]

    Kavan L, Yum J H, Gra zel M 2010 Acs Nano 5 165

    [26]

    Zhu C, Xu F, Chen J, Min H, Dong H, Tong L, Qasim K, Li S, Sun L 2016 J. Power Sources 303 159

  • [1]

    O'regan B, Grtzel M 1991 Nature 353 737

    [2]

    Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod B F, Ashari-Astani N, Tavernelli I, Rothlisberger U, Nazeeruddin M, Grtzel M 2014 Nature Chem. 6 242

    [3]

    Xu F, Sun L 2011 Energy Environ. Sci. 4 818

    [4]

    Li P J, Chen K, Chen Y F, Wang Z G, Hao X, Liu J B, He J R, Zhang W L 2012 Chin. Phys. B 21 11810

    [5]

    Lee W J, Ramasamy E, Lee D Y, Song J S 2008 Sol. Energy Mater. Sol. Cells 92 814

    [6]

    Kwon J, Ganapathy V, Kim Y H, Song K D, Park H G, Jun Y, Yoo P J, Park J H 2013 Nanoscale 5 7838

    [7]

    Thomas S, Deepak T G, Anjusree G S, Arun T A, Nair S V, Nair A S 2014 J. Mater. Chem. A 2 4474

    [8]

    Huang L Q, Zhou L Y, Yu W, Yang D, Zhang J, Li C 2015 Acta Phys. Sin. 64 038103 (in Chinese) [黄林泉, 周玲玉, 于为, 杨栋, 张坚, 李灿 2015 物理学报 64 038103]

    [9]

    Wu M, Lin X, Wang T, Qiu J, Ma T 2011 Energy Environ. Sci. 4 2308

    [10]

    Burschka J, Brault V, Ahmad S, Breau L, Nazeeruddin M K, Marsan B, Zakeeruddin S M, Grtzel M 2012 Energy Environ. Sci. 5 6089

    [11]

    Li Z, Gong F, Zhou G, Wang Z S 2013 J. Phys. Chem. C 117 6561

    [12]

    Bi E, Chen H, Yang X, Peng W, Grtzel M, Han L 2014 Energy Environ. Sci. 7 2637

    [13]

    Tai S Y, Liu C J, Chou S W, Chien S S, Lin J Y, Lin T W 2012 J. Mater. Chem. 22 24753

    [14]

    Zhou H, Yin J, Nie Z, Yang Z, Li D, Wang J, Liu X, Jin C, Zhang X, Ma T 2016 J. Mater. Chem. A 4 67

    [15]

    Huang S, He Q, Chen W, Qiao Q, Zai J, Qian X 2015 Chem. Eur. J. 21 4085

    [16]

    Wang H, Hu Y H 2012 Energy Environ. Sci. 5 8182

    [17]

    Hummers W S, Offeman R E 1958 J. Am. Chem. Soc. 80 1339

    [18]

    Bi H, Xie X, Yin K, Zhou Y, Wan S, Ruoff R S, Sun L 2014 J. Mater. Chem. A 2 1652

    [19]

    Ito S, Murakami T N, Comte P, Liska P, Grtzel C, Nazeeruddin M K, Grtzel M 2008 Thin Solid films 516 4613

    [20]

    Shin H J, Kim K K, Benayad A, Yoon S M, Park H K, Jung I S, Jin M H, Jeong H K, Kim J M, Choi J Y, Lee Y H 2009 Adv. Funct. Mater. 19 1987

    [21]

    Stankovich S, Dikin D A, Piner R D, Khlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S T, Ruoff R S 2007 Carbon 45 1558

    [22]

    Boschloo G, Hagfeldt A 2009 Acc. Chem. Res. 42 1819

    [23]

    Li P J, Chen K, Chen Y F, Wang Z G, Hao X, Liu J B, He J R, Zhang W L 2012 Chin. Phys. B 21 118101

    [24]

    Zhu C, Min H, Xu F, Chen J, Dong H, Tong L, Zhu Y, Sun L 2015 RSC Adv. 5 85822

    [25]

    Kavan L, Yum J H, Gra zel M 2010 Acs Nano 5 165

    [26]

    Zhu C, Xu F, Chen J, Min H, Dong H, Tong L, Qasim K, Li S, Sun L 2016 J. Power Sources 303 159

  • [1] Zhu Hong-Qiang, Luo Lei, Wu Ze-Bang, Yin Kai-Hui, Yue Yuan-Xia, Yang Ying, Feng Qing, Jia Wei-Yao. Theoretical calculation study on enhancing the sensitivity and optical properties of graphene adsorption of nitrogen dioxide via doping. Acta Physica Sinica, 2024, 73(20): 203101. doi: 10.7498/aps.73.20240992
    [2] Wang Wei-Hua. Study of magnetoplasmons in graphene rings with two-dimensional finite element method. Acta Physica Sinica, 2023, 72(8): 087301. doi: 10.7498/aps.72.20222467
    [3] Liu Ying, Guo Si-Lin, Zhang Yong, Yang Peng, Lyu Ke-Hong, Qiu Jing, Liu Guan-Jun. Review on 1/f noise and its research progress in two-dimensional material graphene. Acta Physica Sinica, 2023, 72(1): 017302. doi: 10.7498/aps.72.20221253
    [4] Huang De-Rao, Song Jun-Jie, He Pi-Mo, Huang Kai-Kai, Zhang Han-Jie. Adsorption behavior of 9,9′-Dixanthylidene and moiré superstructure on Ru(0001). Acta Physica Sinica, 2022, 71(21): 216801. doi: 10.7498/aps.71.20221057
    [5] De-Rao Huang,  Jun-Jie Song,  Pi-Mo He,  Kai-Kai Huang,  Han-Jie Zhang. Adsorption Behavior of 9,9'-Dixanthylidene and Moiré Superstructure on Ru(0001). Acta Physica Sinica, 2022, 0(0): . doi: 10.7498/aps.7120221057
    [6] Shen Yan-Li, Shi Bing-Rong, Lü Hao, Zhang Shuai-Yi, Wang Xia. Dye random laser enhanced by graphene-based Au nanoparticles. Acta Physica Sinica, 2022, 71(3): 034206. doi: 10.7498/aps.71.20211613
    [7] Yuan Ying-Kuo, Guo Wei-Ling, Du Zai-Fa, Qian Feng-Song, Liu Ming, Wang Le, Xu Chen, Yan Qun, Sun Jie. Applications of graphene transistor optimized fabrication process in monolithic integrated driving gallium nitride micro-light-emitting diode. Acta Physica Sinica, 2021, 70(19): 197801. doi: 10.7498/aps.70.20210122
    [8] Wang Bo, Zhang Ji-Hong, Li Cong-Ying. Enhancement of near-field thermal radiation of semiconductor vanadium dioxide covered by graphene. Acta Physica Sinica, 2021, 70(5): 054207. doi: 10.7498/aps.70.20201360
    [9] Xu Xiang, Zhang Ying, Yan Qing, Liu Jing-Jing, Wang Jun, Xu Xin-Long, Hua Deng-Xin. Photochemical properties of rhenium disulfide/graphene heterojunctions with different stacking structures. Acta Physica Sinica, 2021, 70(9): 098203. doi: 10.7498/aps.70.20201904
    [10] Zhao Wen-Qi, Zhang Dai, Cui Ming-Hui, Du Ying, Zhang Shu-Yu, Ou Qiong-Rong. Graphene modification based on plasma technologies. Acta Physica Sinica, 2021, 70(9): 095208. doi: 10.7498/aps.70.20202078
    [11] Cui Yan, Xia Cai-Juan, Su Yao-Heng, Zhang Bo-Qun, Zhang Ting-Ting, Liu Yang, Hu Zhen-Yang, Tang Xiao-Jie. Switching characteristics of anthraquinone molecular devices based on graphene electrodes. Acta Physica Sinica, 2021, 70(3): 038501. doi: 10.7498/aps.70.20201095
    [12] Zhang Yu-Xiang, Peng Yi-Tian, Lang Hao-Jie. Controllable nano-friction of graphene surface by fabricating nanoscale patterning based on atomic force microscopy. Acta Physica Sinica, 2020, 69(10): 106801. doi: 10.7498/aps.69.20200124
    [13] Zhang Yuan, Chen Chen, Li Mei-Ya, Luoshan Mengdai. Significant enhancement of the performance of dye-sensitized solar cells with photoelectrode co-doped graphene and hybrid SiO2@Au nanostructure. Acta Physica Sinica, 2020, 69(16): 160201. doi: 10.7498/aps.69.20191722
    [14] Chen Zhuo,  Fang Lei,  Chen Yuan-Fu. Fabrication and photovoltaic performance of counter electrode of 3D porous carbon composite. Acta Physica Sinica, 2019, 68(1): 017802. doi: 10.7498/aps.68.20181833
    [15] Guo Wei-Ling, Deng Jie, Wang Jia-Lu, Wang Le, Tai Jian-Peng. GaN-based light emitting diode with graphene/indium antimony oxide composite transparent electrode. Acta Physica Sinica, 2019, 68(24): 247303. doi: 10.7498/aps.68.20190983
    [16] Liu Le, Tang Jian, Wang Qin-Qin, Shi Dong-Xia, Zhang Guang-Yu. Thermal stability of MoS2 encapsulated by graphene. Acta Physica Sinica, 2018, 67(22): 226501. doi: 10.7498/aps.67.20181255
    [17] Cui Yan, Xia Cai-Juan, Su Yao-Heng, Zhang Bo-Qun, Chen Ai-Min, Yang Ai-Yun, Zhang Ting-Ting, Liu Yang. Rectifying performances of oligo phenylene ethynylene molecular devices based on graphene electrodes. Acta Physica Sinica, 2018, 67(11): 118501. doi: 10.7498/aps.67.20180088
    [18] Zu Feng-Xia, Zhang Pan-Pan, Xiong Lun, Yin Yong, Liu Min-Min, Gao Guo-Ying. Design and electronic transport properties of organic thiophene molecular rectifier with the graphene electrodes. Acta Physica Sinica, 2017, 66(9): 098501. doi: 10.7498/aps.66.098501
    [19] Wu Chun-Yan, Du Xiao-Wei, Zhou Lin, Cai Qi, Jin Yan, Tang Lin, Zhang Han-Ge, Hu Guo-Hui, Jin Qing-Hui. Characterization and preliminary application of top-gated graphene ion-sensitive field effect transistors. Acta Physica Sinica, 2016, 65(8): 080701. doi: 10.7498/aps.65.080701
    [20] Zhou Li, Wei Yuan, Huang Zhi-Xiang, Wu Xian-Liang. Study on the electromagnetic properties of thin-film solar cell grown with graphene using FDFD method. Acta Physica Sinica, 2015, 64(1): 018101. doi: 10.7498/aps.64.018101
Metrics
  • Abstract views:  7355
  • PDF Downloads:  470
  • Cited By: 0
Publishing process
  • Received Date:  27 January 2016
  • Accepted Date:  04 March 2016
  • Published Online:  05 June 2016

/

返回文章
返回