-
Attributed to facile fabrication, low production costs and outstanding photoelectric properties, dye-sensitized solar cells (DSCs) have attracted widespread attention in recent years. In order to achieve better photoelectric conversion efficiency of the DSCs, a series of TiO2 nanocomposite photoanodes co-doped with different amounts of hybrid SiO2@Au nanostructures and certain amount of graphene are prepared by a mechanical ball milling method. The influence of SiO2@Au nanostructures and graphene on the performance of the photoanodes and their DSCs were investigated. The Au nanoparticles can remarkably enhance the short-circuit current density (Jsc
) due to the local surface plasmon resonance effect of the noble metal nanoparticles. As a unique two-dimensional material, graphene has several amazing characteristics, such as high specific surface area and excellent conductivity. Studies showed that by introducing both SiO2@Au nanostructures and graphene, the light-absorbing, electron mobility and dye loading of the photoanodes were remarkably increased. Experimental results indicated that in comparison with those DSCs based with pure TiO2 photoanode, the DSCs with photoanodes incorporated with SiO2@Au nanostructures and graphene showed the optimal performance with short-circuit current density (Jsc ) of 15.59 mA/cm2 and photoelectric conversion efficiency (PCE) of 6.68%, increasing significantly by 15.67% and 8.8%, respectively. This significant enhancement in Jsc and PCE of DSCs are mainly attributed to the increase in light-absorption and dye-loading of the photoanodes due to the hybrid SiO2@Au nanostructures and graphene. -
Keywords:
- hybrid SiO2@Au nanostructure /
- graphene /
- dye-sensitized solar cells
[1] Kong F T, Dai S Y, Wang K J 2007 Adv. Opto. Electron. 13 75384
[2] Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H 2010 Chem. Rev. 110 6595Google Scholar
[3] Jena A, Mohanty S P, Kumar P, Naduvath J, Gondane V, Lekha P, Das J, Narula H K, Mallick S, Bhargava P 2012 T. Indian Ceram. Soc. 71 1Google Scholar
[4] Zhang S, Yang X, Numata Y, Han L 2013 Energy Environ. Sci. 61 443
[5] O'regan B, Grätzel M 1991 Nature 1991 353
[6] Yin J F, Velayudham M, Bhattacharya D, Lin H C, Lu K L 2012 Coordin. Chem. Rev. 256 23
[7] Zhang Q, Cao G 2011 Nano Today 6 91Google Scholar
[8] Chandiran A K, Comte P, Humphry-baker R, Kessler F, Yi C Y, Nazeeruddin M K, Grätzel M 2013 Adv. Funct. Mater. 23 2775Google Scholar
[9] Liu B, Aydil E S 2009 J. Am.Chem. Soc. 131 3985Google Scholar
[10] Cozzoli P D, Kornowski A, Weller H 2003 J. Am. Chem. Soc. 125 14539Google Scholar
[11] Qin X, Wang H C, Li J L, Chen Q 2015 Talanta 139 56Google Scholar
[12] Gurvinder S, Antonius T J, Sulalit B, Sondre V, Jens-Petter A, Wilheim R G 2014 Appl. Surf. Sci. 311 780Google Scholar
[13] Zhang L, Niu W X, Xu G B 2012 Nano Today 7 586Google Scholar
[14] Sun Z H, Yang Z, Zhou J H, Yeung M H, Ni W H, Wu H K, Wang J F 2009 Angew. Chem. 48 2881Google Scholar
[15] Chen H J, Shao L, Li Q, Wang J F 2013 Chem. Sov. Rev. 42 2679Google Scholar
[16] Liu X L, Liang S, Nan F, Yang Z J, Yu X F, Zhou L, Hao Z H, Wang Q Q 2013 Nanoscale 5 5368Google Scholar
[17] Tapan K S, Catherine J M 2004 J. Am. Chem. Soc 126 8648Google Scholar
[18] Suljo L, Phillip C, David B I 2011 Nat. Mater. 10 1038
[19] Subramanian V, Wolf E E, Kamat P V 2003 J. Phys. Chem. B 107 7479Google Scholar
[20] Subramanian V, Wolf E E, Kamat P V 2004 J. Am. Chem. Soc. 126 4943Google Scholar
[21] Chen S, Ingran R S, Hostetler M J, Pietron J J, Murray R W, Schaaff T G 1998 Science 280 2098Google Scholar
[22] Pietron J J, Hicks J F, Murray R W 1999 J. Am. Chem. Soc. 121 5565Google Scholar
[23] Fang X L, Li M Y, Guo K M, Liu X L, Zhu Y D, Sebo B, Zhao X Z 2014 Sol. Energy 101 176Google Scholar
[24] He Z M, Phan H, Liu J, Nguyen T Q, Tan T Y 2013 Adv. Mater. 5 6900
[25] Brown M D, Suteewong T, Kumar R S S, D’Innocenzo V, Petrozza A, Lee M M, Wiesner U, Snaith H 2011 Nano lett. 11 438Google Scholar
[26] Du L C, Furube A, Yamamoto K, Hara K, Katoh R, Tachiya M 2009 J. Phys. Chem. C 113 6454Google Scholar
[27] Hägglund C, Zäch M, Kasemo B 2008 Appl. Phys. Lett. 92 013113Google Scholar
[28] Qi J F, Dang X N, Hammond P T, Belcher A M 2011 ACS Nano 5 7108Google Scholar
[29] Geim A K 2009 Science 324 1530Google Scholar
[30] Luoshan M D, Li M Y, Liu X L, Guo K M, Bai L H, Zhu Y D, Sun B L, Zhao X Z 2015 J. Power Sources 287 231Google Scholar
[31] Luoshan M D, Bai L H, Bu C H, Liu X L, Zhu Y D, Guo K M, Jiang R H, Li M Y, Zhao X Z 2016 J. Power Sources 307 468Google Scholar
-
表 1 不同光阳极的DSCs光电性能参数
Table 1. Photoelectric performance parameters of the DSCs with different photoanodes.
DSCs Jsc/mA·cm–2 Voc /mV FF η Pure 13.478 680 0.67 6.14 0.5% 15.436 678 0.58 6.07 1.0% 15.442 679 0.61 6.40 1.5% 15.59 680 0.63 6.68 2.0% 14.79 682 0.62 6.25 -
[1] Kong F T, Dai S Y, Wang K J 2007 Adv. Opto. Electron. 13 75384
[2] Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H 2010 Chem. Rev. 110 6595Google Scholar
[3] Jena A, Mohanty S P, Kumar P, Naduvath J, Gondane V, Lekha P, Das J, Narula H K, Mallick S, Bhargava P 2012 T. Indian Ceram. Soc. 71 1Google Scholar
[4] Zhang S, Yang X, Numata Y, Han L 2013 Energy Environ. Sci. 61 443
[5] O'regan B, Grätzel M 1991 Nature 1991 353
[6] Yin J F, Velayudham M, Bhattacharya D, Lin H C, Lu K L 2012 Coordin. Chem. Rev. 256 23
[7] Zhang Q, Cao G 2011 Nano Today 6 91Google Scholar
[8] Chandiran A K, Comte P, Humphry-baker R, Kessler F, Yi C Y, Nazeeruddin M K, Grätzel M 2013 Adv. Funct. Mater. 23 2775Google Scholar
[9] Liu B, Aydil E S 2009 J. Am.Chem. Soc. 131 3985Google Scholar
[10] Cozzoli P D, Kornowski A, Weller H 2003 J. Am. Chem. Soc. 125 14539Google Scholar
[11] Qin X, Wang H C, Li J L, Chen Q 2015 Talanta 139 56Google Scholar
[12] Gurvinder S, Antonius T J, Sulalit B, Sondre V, Jens-Petter A, Wilheim R G 2014 Appl. Surf. Sci. 311 780Google Scholar
[13] Zhang L, Niu W X, Xu G B 2012 Nano Today 7 586Google Scholar
[14] Sun Z H, Yang Z, Zhou J H, Yeung M H, Ni W H, Wu H K, Wang J F 2009 Angew. Chem. 48 2881Google Scholar
[15] Chen H J, Shao L, Li Q, Wang J F 2013 Chem. Sov. Rev. 42 2679Google Scholar
[16] Liu X L, Liang S, Nan F, Yang Z J, Yu X F, Zhou L, Hao Z H, Wang Q Q 2013 Nanoscale 5 5368Google Scholar
[17] Tapan K S, Catherine J M 2004 J. Am. Chem. Soc 126 8648Google Scholar
[18] Suljo L, Phillip C, David B I 2011 Nat. Mater. 10 1038
[19] Subramanian V, Wolf E E, Kamat P V 2003 J. Phys. Chem. B 107 7479Google Scholar
[20] Subramanian V, Wolf E E, Kamat P V 2004 J. Am. Chem. Soc. 126 4943Google Scholar
[21] Chen S, Ingran R S, Hostetler M J, Pietron J J, Murray R W, Schaaff T G 1998 Science 280 2098Google Scholar
[22] Pietron J J, Hicks J F, Murray R W 1999 J. Am. Chem. Soc. 121 5565Google Scholar
[23] Fang X L, Li M Y, Guo K M, Liu X L, Zhu Y D, Sebo B, Zhao X Z 2014 Sol. Energy 101 176Google Scholar
[24] He Z M, Phan H, Liu J, Nguyen T Q, Tan T Y 2013 Adv. Mater. 5 6900
[25] Brown M D, Suteewong T, Kumar R S S, D’Innocenzo V, Petrozza A, Lee M M, Wiesner U, Snaith H 2011 Nano lett. 11 438Google Scholar
[26] Du L C, Furube A, Yamamoto K, Hara K, Katoh R, Tachiya M 2009 J. Phys. Chem. C 113 6454Google Scholar
[27] Hägglund C, Zäch M, Kasemo B 2008 Appl. Phys. Lett. 92 013113Google Scholar
[28] Qi J F, Dang X N, Hammond P T, Belcher A M 2011 ACS Nano 5 7108Google Scholar
[29] Geim A K 2009 Science 324 1530Google Scholar
[30] Luoshan M D, Li M Y, Liu X L, Guo K M, Bai L H, Zhu Y D, Sun B L, Zhao X Z 2015 J. Power Sources 287 231Google Scholar
[31] Luoshan M D, Bai L H, Bu C H, Liu X L, Zhu Y D, Guo K M, Jiang R H, Li M Y, Zhao X Z 2016 J. Power Sources 307 468Google Scholar
Catalog
Metrics
- Abstract views: 8005
- PDF Downloads: 114
- Cited By: 0