Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study of graphyne/graphene heterostructure resonant tunneling nano-transistors

Wang Tian-Hui Li Ang Han Bai

Citation:

First-principles study of graphyne/graphene heterostructure resonant tunneling nano-transistors

Wang Tian-Hui, Li Ang, Han Bai
PDF
HTML
Get Citation
  • Resonant tunneling transistors have received wide attention because of their ability to reduce the complexity of circuits, and promise to be an efficient candidate in ultra-high speed and ultra-high frequency applications. The chemical compatibility between graphene and graphdiyne implies that they can be combined into various configurations to fulfill ultra-high frequency nanotransistor. In the present paper, two novel resonant tunneling transistors based on graphene/graphdiyne/graphene double-heterojunction are theoretically developed to model two new kinds of bipolar devices with two representative graphdiyne nanoribbons. The electronic structures of two pristine graphdiyne nanoribbons are investigated by performing the first-principles calculations with all-electron relativistic numerical-orbit scheme as implemented in Dmol3 code. The electronic transport properties including quantum conductance (transmission spectrum) and electrical current varying with bias-voltage for each of the designed graphdiyne nanoribbon transistors are calculated in combination with non-equilibrium Green function formalism. The calculated electronic transmission and current-voltage characteristics of these transistors demonstrate that the current is dominantly determined by resonant tunneling transition and can be effectively controlled by gate electric field thereby representing the favorable negative-differential-conductivity, which is the qualified attribute of ultra-high frequency nanotransistor. It follows from the I-Ub variations explained by electronic transmission spectra that quantum resonance tunneling can occur in the proposed star-like graphdiyne (SGDY) and net-like graphdiyne (NGDY) nanoribbon transistors, with the resonance condition limited to a narrow bias-voltage range, leading to a characteristic resonant peak in I-Ub curve, which means the strong negative differential conductivity. Under a gate voltage of 4 V, when the bias-voltage rises up to 0.6 V (0.7 V), the Fermi level of source electrode aligns identically to the quantized level of SGDY (NGDY) nanoribbon channel, causing electron resonance tunneling as illustrated by the considerable transmission peak in bias window; once the source Fermi level deviates from the quantized level of SGDY (NGDY) channels at higher bias-voltage, the resonance tunneling transforms into ordinary electron tunneling, which results in the disappearing of the substantial transmission peak in bias window and the rapid declining of current. The designed SGDY and NGDY nanotransistors will achieve high-level negative differential conductivity with the peak-to-valley current ratio approaching to 4.5 and 6.0 respectively, which can be expected to be applied to quantum transmission nanoelectronic devices.
      Corresponding author: Han Bai, bak_han@sina.com
    • Funds: Projects supported by the National Natural Science Foundation of China (Grant No. 51607048) and the Young Innovative Talent Training Program of Heilongjiang Province Undergraduate Colleges and Universities, China (Grant No. UNPYSCT-2016049).
    [1]

    Pi S, Lin P, Xia Q 2016 Nanotechnology 27 464004Google Scholar

    [2]

    Lawrence T C, Vashishtha V, Shifren L, Gujja A, Sinha S, Cline B, Ramamurthy C, Yeric G 2016 Microelect. J. 53 105Google Scholar

    [3]

    Guo Y G, Wang F Q, Wang Q 2017 Appl. Phys. Lett. 111 073503Google Scholar

    [4]

    Punniyakoti S, Sivakumarasamy R, Vaurette F, Joseph P, Nishiguchi K, Fujiwara A, Clement N 2017 Adv. Mater. Interf. 4 1601155Google Scholar

    [5]

    Murugesan A 2014 Int. J. Innovative Sci. Eng. Tech. 1 264

    [6]

    Akbar F, Kolahduz M, Larimian S, Radamson H H 2015 J. Mater. Sci. Mater. Elect. 26 4347Google Scholar

    [7]

    Park J S, Choi H J 2015 Phys. Rev. B 92 045402Google Scholar

    [8]

    Mihnev M T, Wang F, Liu G, Rothwell S, Cohen P I, Feldman L C, Conrad E H, Norris T B 2015 Appl. Phys. Lett. 107 173107Google Scholar

    [9]

    Li G, Li Y, Liu H, Guo Y, Li Y, Zhu D 2010 Chem. Commun. 46 3256Google Scholar

    [10]

    Cranford S W, Buehler M J 2011 Carbon 49 4111Google Scholar

    [11]

    Kang J, Li J, Wu F, Li S S, Xia J B 2011 J. Phys. Chem. C 115 20466Google Scholar

    [12]

    Long M, Tang L, Wang D, Li Y, Shuai Z 2011 ACS Nano 5 2593Google Scholar

    [13]

    Zhou J, Lü K, Wang Q, Chen X S, Sun Q, Jena P 2011 J. Chem. Phys. 134 174701Google Scholar

    [14]

    Capasso F, Kiehl R A 1985 J. Appl. Phys. 58 1366Google Scholar

    [15]

    Teong H, Lam K T, Khalid S B, Liang G 2009 J. Appl. Phys. 105 084317Google Scholar

    [16]

    Britnell L, Gorbachev R V, Geim A K, Ponomarenko L A, Mishchenko A, Greenaway M T, Fromhold T M, Novoselov K S, Eaves L 2013 Nat. Commun. 4 1794Google Scholar

    [17]

    Mishchenko A, Tu J S, Cao Y, Gorbachev R V, Wallbank J R, Greenaway M T, Morozov V E, Morozov S V, Zhu M J, Wong S L, Withers F, Woods C R, Kim Y J, Watanabe K, Taniguchi T, Vdovin E E, Makarovsky O, Fromhold T M, FaI’ko V I, Geim A K, Eaves L, Novoselov K S 2014 Nat. Nanotech. 9 808Google Scholar

    [18]

    Özçelik V O, Durgun E, Ciraci S 2015 J. Phys. Chem. C 119 13248Google Scholar

    [19]

    Chowdhury S, Chattaraj S, Biswas D 2015 J. Semicond. 36 044001Google Scholar

    [20]

    Allis D G, Prokhorova D, Korter T M 2006 J. Phys. Chem. A 110 1951Google Scholar

    [21]

    Niehaus T A, Rohlfing M, Della Sala F, Di Carlo A, Frauenheim T 2005 Phys. Rev. A 71 022508Google Scholar

    [22]

    Pecchia A, Penazzi G, Salvucci L, Di Carlo A 2008 New J. Phys. 10 065022Google Scholar

    [23]

    Chantis A N, Christensen N E, Svane A, Cardona M 2010 Phys. Rev. B 81 205205Google Scholar

    [24]

    Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X L, Burke K 2008 Phys. Rev. Lett. 100 136406Google Scholar

    [25]

    Weinert M, Davenport J W 1992 Phys. Rev. B 45 13709Google Scholar

    [26]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [27]

    Tkatchenko A, Scheffler M 2009 Phys. Rev. Lett. 102 073005Google Scholar

    [28]

    Ghanbari Shohany B, RoknabadiM R, Kompany A 2016 Commun. Theor. Phys. 65 99Google Scholar

    [29]

    Dong J, Li H, Li L 2013 NPG Asia Mater. 5 e56Google Scholar

  • 图 1  SGDY (上图)和NGDY (下图)纳米带两端连接石墨烯纳米带半无限电极(源极和漏极粉色区域)构建的双极器件模型, 石墨炔尖端和石墨烯边缘碳原子由氢原子钝化, 黑色框架表示周期性单胞

    Figure 1.  Schematic bipolar device models constructed with the SGDY (above panel) or NGDY (below panel) as center scattering region and the graphene nanoribbons as semi-infinite electrodes (source and drain in pink areas). The apex and edge carbon atoms are passivated by hydrogen atoms, and black frames indicate periodic unit cells.

    图 2  SGDY (a)和NGDY (b)纳米带的电子能带结构, 以费米能级(水平虚线)为能量参考零点

    Figure 2.  Electronic energy band structure of SGDY (a) and NGDY (b) nanoribbons with Fermi energy level as reference energy zero (horizontal dashed line).

    图 3  在SGDY/石墨烯异质结纳米带双极器件的垂直方向施加栅极电压构建的晶体管电子输运计算模型, 粉色区域表示电极, 灰色、白色、红色、黄色和粉色小球分别代表碳、氢、氧、硅和铝原子

    Figure 3.  Electron transport calculation in transistor model of bipolar devices with the SGDY/graphene nanoribbons heterostructure as the center scattering region and semi-infinite electrodes (source and drain) respectively under the gate voltage in vertical direction. The pink areas indicate electrodes, and the gray, white, red, yellow and pink spheres represent carbon, hydrogen, oxygen, silicon and aluminium atoms respectively.

    图 4  SGDY和NGDY纳米带晶体管的漏极电流随偏置电压的变化 (a) Ug = 0 V; (b) Ug = 4 V

    Figure 4.  Drain current of SGDY and NGDY nanoribbon transistors varying with bias voltage under (a) Ug = 0 V and (b) Ug = 4 V

    图 5  SGDY纳米带晶体管在偏置电压0—1.0 V范围内的电子透射谱(栅极电压Ug = 4 V)

    Figure 5.  Electron transmission spectra of SGDY nanoribbon transistors in the bias voltage range of 0−1.0 V under gate voltage Ug = 4 V.

    表 1  使用Dmol3程序的计算方法和参数设置

    Table 1.  Scheme and parameter setting up in calculationswith Dmol3 program.

    电子态描述及求解方法计算方案参数设置
    交换相关泛函GGAPBEsol[24]
    电子与原子实相互作用(core treatment)全电子相对论(all electron relativistic)
    数值基组双数值极化(DNP)
    轨道截至(orbital cutoff)Global5.0 Å
    SCF容忍度1 × 10–6 Ha/原子 (1 Ha = 27.2 eV)
    多极展开八极
    密度混合电荷和自旋混合幅度分别为0.2和0.5
    轨道占据热拖尾(smearing)[25]0.001 Ha
    布里渊区积分k点取样(电子结构)Monkhorst-Pack格点[26]1 × 1 × 25
    计算范德瓦耳斯相互作用DFT交换-相关泛函色散校正[27]
    布里渊区积分k点取样(电子输运)均匀间隔格点间隔0.02/Å
    泊松求解法和泊松边界条件(电子输运)器件侧面缓冲长度7.5 Å
    泊松网格最大格点间距0.5 Å
    电极界面边界条件Dirichlet
    非电极界面边界条件Neumann
    电极边界区缓冲长度3 Å
    DownLoad: CSV

    表 2  不同纳米带晶体管在不同栅极电压下的PVR

    Table 2.  PVR for nanoribbon transistors fabricated with different materials under different gate voltage.

    纳米带散射区电极研究方法栅极电压 /VPVR数据来源
    SGDY, NGDY石墨烯第一原理计算54.5, 6.0本文
    BN石墨烯理论计算和实验0, 201—4Ref. [16]
    BN石墨烯理论计算和实验–40, 0, 40Ref. [17]
    GaN-Al-GaNGaN理论计算(Matlab)–1, –2, –32.66Ref. [19]
    DownLoad: CSV
  • [1]

    Pi S, Lin P, Xia Q 2016 Nanotechnology 27 464004Google Scholar

    [2]

    Lawrence T C, Vashishtha V, Shifren L, Gujja A, Sinha S, Cline B, Ramamurthy C, Yeric G 2016 Microelect. J. 53 105Google Scholar

    [3]

    Guo Y G, Wang F Q, Wang Q 2017 Appl. Phys. Lett. 111 073503Google Scholar

    [4]

    Punniyakoti S, Sivakumarasamy R, Vaurette F, Joseph P, Nishiguchi K, Fujiwara A, Clement N 2017 Adv. Mater. Interf. 4 1601155Google Scholar

    [5]

    Murugesan A 2014 Int. J. Innovative Sci. Eng. Tech. 1 264

    [6]

    Akbar F, Kolahduz M, Larimian S, Radamson H H 2015 J. Mater. Sci. Mater. Elect. 26 4347Google Scholar

    [7]

    Park J S, Choi H J 2015 Phys. Rev. B 92 045402Google Scholar

    [8]

    Mihnev M T, Wang F, Liu G, Rothwell S, Cohen P I, Feldman L C, Conrad E H, Norris T B 2015 Appl. Phys. Lett. 107 173107Google Scholar

    [9]

    Li G, Li Y, Liu H, Guo Y, Li Y, Zhu D 2010 Chem. Commun. 46 3256Google Scholar

    [10]

    Cranford S W, Buehler M J 2011 Carbon 49 4111Google Scholar

    [11]

    Kang J, Li J, Wu F, Li S S, Xia J B 2011 J. Phys. Chem. C 115 20466Google Scholar

    [12]

    Long M, Tang L, Wang D, Li Y, Shuai Z 2011 ACS Nano 5 2593Google Scholar

    [13]

    Zhou J, Lü K, Wang Q, Chen X S, Sun Q, Jena P 2011 J. Chem. Phys. 134 174701Google Scholar

    [14]

    Capasso F, Kiehl R A 1985 J. Appl. Phys. 58 1366Google Scholar

    [15]

    Teong H, Lam K T, Khalid S B, Liang G 2009 J. Appl. Phys. 105 084317Google Scholar

    [16]

    Britnell L, Gorbachev R V, Geim A K, Ponomarenko L A, Mishchenko A, Greenaway M T, Fromhold T M, Novoselov K S, Eaves L 2013 Nat. Commun. 4 1794Google Scholar

    [17]

    Mishchenko A, Tu J S, Cao Y, Gorbachev R V, Wallbank J R, Greenaway M T, Morozov V E, Morozov S V, Zhu M J, Wong S L, Withers F, Woods C R, Kim Y J, Watanabe K, Taniguchi T, Vdovin E E, Makarovsky O, Fromhold T M, FaI’ko V I, Geim A K, Eaves L, Novoselov K S 2014 Nat. Nanotech. 9 808Google Scholar

    [18]

    Özçelik V O, Durgun E, Ciraci S 2015 J. Phys. Chem. C 119 13248Google Scholar

    [19]

    Chowdhury S, Chattaraj S, Biswas D 2015 J. Semicond. 36 044001Google Scholar

    [20]

    Allis D G, Prokhorova D, Korter T M 2006 J. Phys. Chem. A 110 1951Google Scholar

    [21]

    Niehaus T A, Rohlfing M, Della Sala F, Di Carlo A, Frauenheim T 2005 Phys. Rev. A 71 022508Google Scholar

    [22]

    Pecchia A, Penazzi G, Salvucci L, Di Carlo A 2008 New J. Phys. 10 065022Google Scholar

    [23]

    Chantis A N, Christensen N E, Svane A, Cardona M 2010 Phys. Rev. B 81 205205Google Scholar

    [24]

    Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X L, Burke K 2008 Phys. Rev. Lett. 100 136406Google Scholar

    [25]

    Weinert M, Davenport J W 1992 Phys. Rev. B 45 13709Google Scholar

    [26]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [27]

    Tkatchenko A, Scheffler M 2009 Phys. Rev. Lett. 102 073005Google Scholar

    [28]

    Ghanbari Shohany B, RoknabadiM R, Kompany A 2016 Commun. Theor. Phys. 65 99Google Scholar

    [29]

    Dong J, Li H, Li L 2013 NPG Asia Mater. 5 e56Google Scholar

  • [1] Duan Yu, Dai Xiao-Kang, Wu Chen-Chen, Yang Xiao-Xia. Tunable acoustic graphene plasmon enhanced nano-infrared spectroscopy. Acta Physica Sinica, 2024, 73(13): 138101. doi: 10.7498/aps.73.20240489
    [2] Shen Yan-Li, Shi Bing-Rong, Lü Hao, Zhang Shuai-Yi, Wang Xia. Dye random laser enhanced by graphene-based Au nanoparticles. Acta Physica Sinica, 2022, 71(3): 034206. doi: 10.7498/aps.71.20211613
    [3] Xu Xiang, Zhang Ying, Yan Qing, Liu Jing-Jing, Wang Jun, Xu Xin-Long, Hua Deng-Xin. Photochemical properties of rhenium disulfide/graphene heterojunctions with different stacking structures. Acta Physica Sinica, 2021, 70(9): 098203. doi: 10.7498/aps.70.20201904
    [4] Dong Hui-Ying, Qin Xiao-Ru, Xue Wen-Rui, Cheng Xin, Li Ning, Li Chang-Yong. Mode characteristics of asymmetric graphene-coated elliptical dielectric nano-parallel wires waveguide. Acta Physica Sinica, 2020, 69(23): 238102. doi: 10.7498/aps.69.20201041
    [5] Chen Ling-Xiu, Wang Hui-Shan, Jiang Cheng-Xin, Chen Chen, Wang Hao-Min. Synthesis and characterization of graphene nanoribbons on hexagonal boron nitride. Acta Physica Sinica, 2019, 68(16): 168102. doi: 10.7498/aps.68.20191036
    [6] Chen Yong, Li Rui. Interaction between borophene and graphene on a nanoscale. Acta Physica Sinica, 2019, 68(18): 186801. doi: 10.7498/aps.68.20190692
    [7] Cai Meng-Yuan, Tang Chun-Mei, Zhang Qiu-Yue. Optimized Li storage performance of B, N doped graphyne as Li-ion battery anode materials. Acta Physica Sinica, 2019, 68(21): 213601. doi: 10.7498/aps.68.20191161
    [8] Zheng Jia-Jin, Wang Ya-Ru, Yu Ke-Han, Xu Xiang-Xing, Sheng Xue-Xi, Hu Er-Tao, Wei Wei. Field effect transistor photodetector based on graphene and perovskite quantum dots. Acta Physica Sinica, 2018, 67(11): 118502. doi: 10.7498/aps.67.20180129
    [9] Chen Hao, Zhang Xiao-Xia, Wang Hong, Ji Yue-Hua. Near-infrared absorption of graphene-metal nanostructure based on magnetic polaritons. Acta Physica Sinica, 2018, 67(11): 118101. doi: 10.7498/aps.67.20180196
    [10] Bai Qing-Shun, Shen Rong-Qi, He Xin, Liu Shun, Zhang Fei-Hu, Guo Yong-Bo. Interface adhesion property between graphene film and surface of nanometric microstructure. Acta Physica Sinica, 2018, 67(3): 030201. doi: 10.7498/aps.67.20172153
    [11] Zhang Hui, Cai Xiao-Ming, Hao Zhen-Liang, Ruan Zi-Lin, Lu Jian-Chen, Cai Jin-Ming. Fabrication and electrical engineering of graphene nanoribbons. Acta Physica Sinica, 2017, 66(21): 218103. doi: 10.7498/aps.66.218103
    [12] Zhang Hui-Zhen, Li Jin-Tao, Lü Wen-Gang, Yang Hai-Fang, Tang Cheng-Chun, Gu Chang-Zhi, Li Jun-Jie. Fabrication of graphene nanostructure and bandgap tuning. Acta Physica Sinica, 2017, 66(21): 217301. doi: 10.7498/aps.66.217301
    [13] Gu Ji-Wei, Wang Jin-Cheng, Wang Zhi-Jun, Li Jun-Jie, Guo Can, Tang Sai. Phase-field crystal modelling the nucleation processes of graphene structures on different substrates. Acta Physica Sinica, 2017, 66(21): 216101. doi: 10.7498/aps.66.216101
    [14] Chen Xian, Cheng Mei-Juan, Wu Shun-Qing, Zhu Zi-Zhong. First-principle study of structure stability and electronic structures of graphyne derivatives. Acta Physica Sinica, 2017, 66(10): 107102. doi: 10.7498/aps.66.107102
    [15] Chi Bao-Qian, Liu Yi, Xu Jing-Cheng, Qin Xu-Ming, Sun Chen, Bai Cheng-Hao, Liu Yi-Fan, Zhao Xin-Luo, Li Xiao-Wu. Density functional theory study of structure stability and electronic structures of graphyne derivatives. Acta Physica Sinica, 2016, 65(13): 133101. doi: 10.7498/aps.65.133101
    [16] Yang Jing-Jing, Li Jun-Jie, Deng Wei, Cheng Cheng, Huang Ming. Transmission mode of a single layer graphene and its performance in the detection of the vibration spectrum of gas molecular. Acta Physica Sinica, 2015, 64(19): 198102. doi: 10.7498/aps.64.198102
    [17] Sheng Shi-Wei, Li Kang, Kong Fan-Min, Yue Qing-Yang, Zhuang Hua-Wei, Zhao Jia. Tooth-shaped plasmonic filter based on graphene nanoribbon. Acta Physica Sinica, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [18] Deng Xin-Hua, Yuan Ji-Ren, Liu Jiang-Tao, Wang Tong-Biao. Tunable terahertz photonic crystal structures containing graphene. Acta Physica Sinica, 2015, 64(7): 074101. doi: 10.7498/aps.64.074101
    [19] Xie Ling-Yun, Xiao Wen-Bo, Huang Guo-Qing, Hu Ai-Rong, Liu Jiang-Tao. Terahertz absorption of graphene enhanced by one-dimensional photonic crystal. Acta Physica Sinica, 2014, 63(5): 057803. doi: 10.7498/aps.63.057803
    [20] Xu Yue-Hang, Guo Yun-Chuan, Wu Yun-Qiu, Xu Rui-Min, Yan Bo. Electrical read out of nano-electromechanical system signal by using graphene resonant channel transistor. Acta Physica Sinica, 2012, 61(1): 010701. doi: 10.7498/aps.61.010701
Metrics
  • Abstract views:  11441
  • PDF Downloads:  151
  • Cited By: 0
Publishing process
  • Received Date:  01 June 2019
  • Accepted Date:  10 July 2019
  • Available Online:  01 September 2019
  • Published Online:  20 September 2019

/

返回文章
返回