Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Anonymous communication scheme based on quantum walk on Cayley graph

He Zhen-Xing Fan Xing-Kui Chu Peng-Cheng Ma Hong-Yang

Citation:

Anonymous communication scheme based on quantum walk on Cayley graph

He Zhen-Xing, Fan Xing-Kui, Chu Peng-Cheng, Ma Hong-Yang
PDF
HTML
Get Citation
  • Information security is the cornerstone and lifeblood of national security in the information society, and anonymous quantum communication is one of the important ways to protect information security. Using quantum walk randomness to effectively solve sensitive problems such as leakage of identity information. In this paper, an anonymous communication scheme based on quantum walks on the Cayley graph is proposed. First, both parties in the communication hide their identity information, and the sender Alice anonymously selects the receiver Bob through logic or operation. Secondly, the trusted third party and the communicating parties use the BB84 protocol to generate and distribute the security key. Alice encrypts the information sequence according to the security key to obtain the blind information; Bob uses the joint Bell state measurement and security key to sign and the trusted third party verifies the signature information. Third, the trusted third party calculates the position probability distribution function of Bob’s quantum walk via the Fourier transform, converts the position information corresponding to the maximum probability into a confirmation frame and sends it to Alice; Alice uses the quantum compression algorithm by decreasing dimensions to reduce the number of transmitted information bits(the length of the information bit can be reduced by up to 37.5%) and uses the security key to complete the information encryption and then transmit the information to the location indicated by the confirmation frame. Bob uses quantum walks to search the location node to obtain the transmission information and complete the anonymous quantum communication. Finally, the security analysis of the scheme is carried out, and the numerical simulation results of the Cayley graph of 200 nodes are given. At the 10-step walk, the maximal probability of the 6th node is 45.31%. According to the simulation results, the probability that Bob is eavesdropped on the specific location at his 10-step walk during the communication of this scheme is approximately 6 × 10–7%, so the receiver can avoid the identity information from the eavesdropping with a high probability, and the quantum network anonymity protocol is not broken.
      Corresponding author: Ma Hong-Yang, hongyang_ma@aliyun.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11975132, 61772295), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2019YQ01), and the Project of Higher Educational Science and Technology Program of Shandong Province, China (Grant No. J18KZ012)
    [1]

    Furusawa A, Sørensen J L, Braunstein S L, Fuchs C A, Kimble H J, Polzik E S 1998 Science 282 706Google Scholar

    [2]

    Hillery M, Bužek V, Berthiaume A 1999 Phys. Rev. A 59 1892

    [3]

    胡钰安, 叶志清 2014 光子学报 43 827001Google Scholar

    Hu Y A, Ye Z Q 2014 Acta Photon. Sin. 43 827001Google Scholar

    [4]

    Unnikrishnan A, MacFarlane I J, Yi R, Diamanti E, Markham D, Kerenidis I 2019 Phys. Rev. Lett. 122 240510

    [5]

    Brassard G, Broadbent A, Fitzsimons J, Gambs S, Tapp A 2007 13 th International Conference on the Theory and Application of Cryptology and Information Security Kuching, Malaysia, December 2–6, 2007 pp460–473

    [6]

    陈鹏, 蔡有勋, 蔡晓菲, 施丽慧, 余旭涛 2015 物理学报 64 040301

    Chen P, Cai Y X, Cai X F, Shi L H, Yu X T 2015 Acta Phy. Sin. 64 040301

    [7]

    聂敏, 王林飞, 杨光, 张美玲, 裴昌幸 2015 物理学报 64 210303Google Scholar

    Nie M, Wang L F, Yang G, Zhang M L, Pei C X 2015 Acta Phy. Sin. 64 210303Google Scholar

    [8]

    Wehner S 2004 Ph. D. Dissertation (Holland: Universiteit van Amsterdam)

    [9]

    Chaum D 1988 J. Cryptol. 1 1Google Scholar

    [10]

    Chen X B, Sun Y R, Xu G 2019 Inf. Sci. 501 172Google Scholar

    [11]

    Xu G, Xiao K, Li Z P, Niu X X, Ryan M 2019 CMC-Comput. Mater. Con. 58 809

    [12]

    Lipinska V, Murta G, Wehner S 2018 Phys. Rev. A 98 052320Google Scholar

    [13]

    薛鹏, 郭光灿 2002 物理 31 385Google Scholar

    Xue P, Guo G C 2002 Physics 31 385Google Scholar

    [14]

    Boykin P O 2002 Ph. D. Dissertation (Los Angeles: University of California)

    [15]

    Christandl M, Wehner S 2005 11th International Conference on the Theory and Application of Cryptology and Information Chennai, India, December 4–8, 2005 pp217–235

    [16]

    Bouda J, Sprojcar J 2007 First International Conference on Quantum, Nano, and Micro Technologies Gosier, Guadeloupe, January 2–6, 2007 p12

    [17]

    Jiang L, He G Q, Nie D, Xiong J, Zeng G H 2012 Phys. Rev. A 85 042309Google Scholar

    [18]

    周南润, 龚黎华, 刘三秋, 曾贵华 2007 物理学报 56 5066Google Scholar

    Zhou N R, Gong L H, Liu S Q, Zeng G H 2007 Acta Phys. Sin. 56 5066Google Scholar

    [19]

    Montanaro A 2016 NPJ Quantum Inf. 2 15023Google Scholar

    [20]

    杨乐, 李凯, 戴宏毅, 张明 2019 物理学报 68 140301Google Scholar

    Yang L, Li K, Dai H Y, Zhang M 2019 Acta Phys. Sin. 68 140301Google Scholar

    [21]

    Travaglione B C, Milburn G J 2002 Phys. Rev. A 65 032310Google Scholar

    [22]

    Childs A M, Goldstone J 2004 Phys. Rev. A 70 022314Google Scholar

    [23]

    Childs A M, Cleve R, Deotto E, Farhi E, Gutmann S, Spielman D A 2003 Proceedings of the Thirty-fifth Annual ACM Symposium on Theory of Computing San Diego, America, June 9–11, 2003 pp59–68

    [24]

    Sansoni L, Sciarrino F, Vallone G, Mataloni P, Crespi A, Ramponi R, Osellame R 2012 Phys. Rev. Lett. 108 010502Google Scholar

    [25]

    Childs A M 2009 Phys. Rev. Lett. 102 180510

    [26]

    Zhan H 2019 Quantum Inf. Process. 18 369Google Scholar

    [27]

    Costa P, de Melo F, Portugal R 2019 Phys. Rev. A 100 042320Google Scholar

    [28]

    Di Molfetta G, Arrighi P 2020 Quantum Inf. Process. 19 47Google Scholar

    [29]

    Wong T G 2019 Phys. Rev. A 100 062325Google Scholar

    [30]

    Szigeti B E, Homa G, Zimborás Z, Barankai N 2019 Phys. Rev. A 100 062320Google Scholar

    [31]

    Wang Y, Shang Y, Xue P 2017 Quantum Inf. Process. 16 221Google Scholar

    [32]

    Feng Y Y, Shi R H, Shi J J, Zhou J, Guo Y 2019 Quantum Inf. Process. 18 154Google Scholar

    [33]

    Li H J, Li J, Xiang N, Zheng Y, Yang Y G, Naseri M 2019 Quantum Inf. Process. 18 316Google Scholar

    [34]

    Abd-El-Atty B, El-Latif A A A, Venegas-Andraca S E 2019 Quantum Inf. Process. 18 272Google Scholar

    [35]

    Xu P A, He Z X, Qiu T H, Ma H Y 2020 Opt. Express 28 12508Google Scholar

    [36]

    Shi P, Li N C, Wang S M, Liu Z, Ren M R, Ma H Y 2019 Sensors 19 5257Google Scholar

    [37]

    Ma H Y, Teng J K, Hu T, Shi P, Wang S M 2020 Wireless. Pers. Commun. https://doi.org/10.1088/1674-1056/ab773 e [quant-ph]

    [38]

    Zhao J B, Zhang W B, Ma Y L, Zhang X H, Ma H Y 2020 Appl. Sci. 10 1935Google Scholar

    [39]

    Ye C Q, Ye T Y 2019 Int. J. Theor. Phys. 58 1282Google Scholar

    [40]

    Qin L G, Wang Z Y, Wu S C, Gong S Q, Ma H Y, Jing J 2018 Opt. Commun. 410 102Google Scholar

    [41]

    Gong L, Qiu K, Deng C, Zhou N 2019 Opt. Laser Technol. 115 257Google Scholar

    [42]

    Chen X B, Wang Y L, Xu G, Yang Y Y 2019 IEEE Access 7 13634Google Scholar

    [43]

    Li H J, Chen X B, Wang Y L, Hou Y Y, Li J 2019 Quantum Inf. Process. 18 16Google Scholar

    [44]

    Facer C, Twamley J, Cresser J 2008 Phys. Rev. A 77 012334Google Scholar

    [45]

    Deng F G, Long G L 2004 Phys. Rev. A 69 052319Google Scholar

    [46]

    龙桂鲁, 王川, 李岩松, 邓富国 2011 中国科学: 物理学 力学 天文学 41 332

    Long G L, Wang C, Li Y S, Deng F G 2011 Sci. Sin. Phys. Mech. Astron. 41 332

    [47]

    Kempf A, Portugal R 2009 Phys. Rev. A 79 052317Google Scholar

    [48]

    Childs A M 2010 Commun. Math. Phys. 294 281

    [49]

    刘欣, 梁燕霞, 聂敏, 魏媛媛 2017 光电子·激光 11 7

    Liu X, Liang Y X, Nie M, Wei Y Y 2017 J. Optoelectron. Laser 11 7

    [50]

    马鸿洋, 张鑫, 徐鹏翱, 刘芬, 范兴奎 2020 通信学报 41 190Google Scholar

    Ma H Y, Zhang X, Xu P A, Liu F, Fan X K 2020 J. Commun. 41 190Google Scholar

    [51]

    Diaconis P, Rockmore D 1990 J. Am. Math. Soc. 3 297Google Scholar

    [52]

    Hsiao H C, Kim T J, Perring A, Yamada A 2012 IEEE Secur. Privacy 19 506

  • 图 1  匿名量子通信方案流程图

    Figure 1.  Flow chart of anonymous quantum communication scheme.

    图 2  量子压缩过程

    Figure 2.  Quantum compression process.

    图 3  匿名量子通信过程

    Figure 3.  Anonymous quantum communication process.

    图 4  环形结构

    Figure 4.  Ring structure graph.

    图 5  量子漫步10步时概率分布图

    Figure 5.  Probability distribution diagram for quantum walk in 10 steps.

    表 1  信息N和签名Sor的对应关系

    Table 1.  Correspondence between information N and Sor signature

    Alice信息序列$ N_{j} $ Bob签名序列$ Sor_{j} $
    00 00 或 01
    01 10 或 11
    10 00 或 11
    11 01 或 11
    DownLoad: CSV

    表 2  数值仿真结果

    Table 2.  Numerical simulation results

    时间 节点总数 位置 概率/%
    3 100 2 72.72
    10 500 6 45.31
    30 200 或 500 20 25.92
    50 200 或 500 34 18.95
    100 100 68 12.20
    200 200 138 10.81
    DownLoad: CSV
  • [1]

    Furusawa A, Sørensen J L, Braunstein S L, Fuchs C A, Kimble H J, Polzik E S 1998 Science 282 706Google Scholar

    [2]

    Hillery M, Bužek V, Berthiaume A 1999 Phys. Rev. A 59 1892

    [3]

    胡钰安, 叶志清 2014 光子学报 43 827001Google Scholar

    Hu Y A, Ye Z Q 2014 Acta Photon. Sin. 43 827001Google Scholar

    [4]

    Unnikrishnan A, MacFarlane I J, Yi R, Diamanti E, Markham D, Kerenidis I 2019 Phys. Rev. Lett. 122 240510

    [5]

    Brassard G, Broadbent A, Fitzsimons J, Gambs S, Tapp A 2007 13 th International Conference on the Theory and Application of Cryptology and Information Security Kuching, Malaysia, December 2–6, 2007 pp460–473

    [6]

    陈鹏, 蔡有勋, 蔡晓菲, 施丽慧, 余旭涛 2015 物理学报 64 040301

    Chen P, Cai Y X, Cai X F, Shi L H, Yu X T 2015 Acta Phy. Sin. 64 040301

    [7]

    聂敏, 王林飞, 杨光, 张美玲, 裴昌幸 2015 物理学报 64 210303Google Scholar

    Nie M, Wang L F, Yang G, Zhang M L, Pei C X 2015 Acta Phy. Sin. 64 210303Google Scholar

    [8]

    Wehner S 2004 Ph. D. Dissertation (Holland: Universiteit van Amsterdam)

    [9]

    Chaum D 1988 J. Cryptol. 1 1Google Scholar

    [10]

    Chen X B, Sun Y R, Xu G 2019 Inf. Sci. 501 172Google Scholar

    [11]

    Xu G, Xiao K, Li Z P, Niu X X, Ryan M 2019 CMC-Comput. Mater. Con. 58 809

    [12]

    Lipinska V, Murta G, Wehner S 2018 Phys. Rev. A 98 052320Google Scholar

    [13]

    薛鹏, 郭光灿 2002 物理 31 385Google Scholar

    Xue P, Guo G C 2002 Physics 31 385Google Scholar

    [14]

    Boykin P O 2002 Ph. D. Dissertation (Los Angeles: University of California)

    [15]

    Christandl M, Wehner S 2005 11th International Conference on the Theory and Application of Cryptology and Information Chennai, India, December 4–8, 2005 pp217–235

    [16]

    Bouda J, Sprojcar J 2007 First International Conference on Quantum, Nano, and Micro Technologies Gosier, Guadeloupe, January 2–6, 2007 p12

    [17]

    Jiang L, He G Q, Nie D, Xiong J, Zeng G H 2012 Phys. Rev. A 85 042309Google Scholar

    [18]

    周南润, 龚黎华, 刘三秋, 曾贵华 2007 物理学报 56 5066Google Scholar

    Zhou N R, Gong L H, Liu S Q, Zeng G H 2007 Acta Phys. Sin. 56 5066Google Scholar

    [19]

    Montanaro A 2016 NPJ Quantum Inf. 2 15023Google Scholar

    [20]

    杨乐, 李凯, 戴宏毅, 张明 2019 物理学报 68 140301Google Scholar

    Yang L, Li K, Dai H Y, Zhang M 2019 Acta Phys. Sin. 68 140301Google Scholar

    [21]

    Travaglione B C, Milburn G J 2002 Phys. Rev. A 65 032310Google Scholar

    [22]

    Childs A M, Goldstone J 2004 Phys. Rev. A 70 022314Google Scholar

    [23]

    Childs A M, Cleve R, Deotto E, Farhi E, Gutmann S, Spielman D A 2003 Proceedings of the Thirty-fifth Annual ACM Symposium on Theory of Computing San Diego, America, June 9–11, 2003 pp59–68

    [24]

    Sansoni L, Sciarrino F, Vallone G, Mataloni P, Crespi A, Ramponi R, Osellame R 2012 Phys. Rev. Lett. 108 010502Google Scholar

    [25]

    Childs A M 2009 Phys. Rev. Lett. 102 180510

    [26]

    Zhan H 2019 Quantum Inf. Process. 18 369Google Scholar

    [27]

    Costa P, de Melo F, Portugal R 2019 Phys. Rev. A 100 042320Google Scholar

    [28]

    Di Molfetta G, Arrighi P 2020 Quantum Inf. Process. 19 47Google Scholar

    [29]

    Wong T G 2019 Phys. Rev. A 100 062325Google Scholar

    [30]

    Szigeti B E, Homa G, Zimborás Z, Barankai N 2019 Phys. Rev. A 100 062320Google Scholar

    [31]

    Wang Y, Shang Y, Xue P 2017 Quantum Inf. Process. 16 221Google Scholar

    [32]

    Feng Y Y, Shi R H, Shi J J, Zhou J, Guo Y 2019 Quantum Inf. Process. 18 154Google Scholar

    [33]

    Li H J, Li J, Xiang N, Zheng Y, Yang Y G, Naseri M 2019 Quantum Inf. Process. 18 316Google Scholar

    [34]

    Abd-El-Atty B, El-Latif A A A, Venegas-Andraca S E 2019 Quantum Inf. Process. 18 272Google Scholar

    [35]

    Xu P A, He Z X, Qiu T H, Ma H Y 2020 Opt. Express 28 12508Google Scholar

    [36]

    Shi P, Li N C, Wang S M, Liu Z, Ren M R, Ma H Y 2019 Sensors 19 5257Google Scholar

    [37]

    Ma H Y, Teng J K, Hu T, Shi P, Wang S M 2020 Wireless. Pers. Commun. https://doi.org/10.1088/1674-1056/ab773 e [quant-ph]

    [38]

    Zhao J B, Zhang W B, Ma Y L, Zhang X H, Ma H Y 2020 Appl. Sci. 10 1935Google Scholar

    [39]

    Ye C Q, Ye T Y 2019 Int. J. Theor. Phys. 58 1282Google Scholar

    [40]

    Qin L G, Wang Z Y, Wu S C, Gong S Q, Ma H Y, Jing J 2018 Opt. Commun. 410 102Google Scholar

    [41]

    Gong L, Qiu K, Deng C, Zhou N 2019 Opt. Laser Technol. 115 257Google Scholar

    [42]

    Chen X B, Wang Y L, Xu G, Yang Y Y 2019 IEEE Access 7 13634Google Scholar

    [43]

    Li H J, Chen X B, Wang Y L, Hou Y Y, Li J 2019 Quantum Inf. Process. 18 16Google Scholar

    [44]

    Facer C, Twamley J, Cresser J 2008 Phys. Rev. A 77 012334Google Scholar

    [45]

    Deng F G, Long G L 2004 Phys. Rev. A 69 052319Google Scholar

    [46]

    龙桂鲁, 王川, 李岩松, 邓富国 2011 中国科学: 物理学 力学 天文学 41 332

    Long G L, Wang C, Li Y S, Deng F G 2011 Sci. Sin. Phys. Mech. Astron. 41 332

    [47]

    Kempf A, Portugal R 2009 Phys. Rev. A 79 052317Google Scholar

    [48]

    Childs A M 2010 Commun. Math. Phys. 294 281

    [49]

    刘欣, 梁燕霞, 聂敏, 魏媛媛 2017 光电子·激光 11 7

    Liu X, Liang Y X, Nie M, Wei Y Y 2017 J. Optoelectron. Laser 11 7

    [50]

    马鸿洋, 张鑫, 徐鹏翱, 刘芬, 范兴奎 2020 通信学报 41 190Google Scholar

    Ma H Y, Zhang X, Xu P A, Liu F, Fan X K 2020 J. Commun. 41 190Google Scholar

    [51]

    Diaconis P, Rockmore D 1990 J. Am. Math. Soc. 3 297Google Scholar

    [52]

    Hsiao H C, Kim T J, Perring A, Yamada A 2012 IEEE Secur. Privacy 19 506

  • [1] Chen Yue, Liu Chang-Jie, Zheng Yi-Jia, Cao Yuan, Guo Ming-Xuan, Zhu Jia-Li, Zhou Xing-Yu, Yu Xiao-Song, Zhao Yong-Li, Wang Qin. On-demand provisioning strategy for inter-domain key services in multi-domain cross-protocol quantum networks. Acta Physica Sinica, 2024, 73(17): 170301. doi: 10.7498/aps.73.20240819
    [2] Lai Hong, Ren Li, Huang Zhong-Rui, Wan Lin-Chun. Quantum network communication resource optimization scheme based on multi-scale entanglement renormalization ansatz. Acta Physica Sinica, 2024, 73(23): 230301. doi: 10.7498/aps.73.20241382
    [3] Yang Guang, Liu Qi, Nie Min, Liu Yuan-Hua, Zhang Mei-Ling. Multi-hop entanglement swapping in quantum networks based on polization-space hyperentanglement. Acta Physica Sinica, 2022, 71(10): 100301. doi: 10.7498/aps.71.20212173
    [4] Feedback search algorithm for multi-particle quantum walks over a ring based on permutation groups. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211000
    [5] Yang Tian-Shu, Zhou Zong-Quan, Li Chuan-Feng, Guo Guang-Can. Multimode solid-state quantum memory. Acta Physica Sinica, 2019, 68(3): 030303. doi: 10.7498/aps.68.20182207
    [6] Yang Lu, Ma Hong-Yang, Zheng Chao, Ding Xiao-Lan, Gao Jian-Cun, Long Gui-Lu. Quantum communication scheme based on quantum teleportation. Acta Physica Sinica, 2017, 66(23): 230303. doi: 10.7498/aps.66.230303
    [7] Nie Min, Wang Lin-Fei, Yang Guang, Zhang Mei-Ling, Pei Chang-Xing. Transmission protocol and its performance analysis of quantum communication network based on packet switching. Acta Physica Sinica, 2015, 64(21): 210303. doi: 10.7498/aps.64.210303
    [8] Chen Peng, Cai You-Xun, Cai Xiao-Fei, Shi Li-Hui, Yu Xu-Tao. Quantum channel establishing rate model of quantum communication network based on entangled states. Acta Physica Sinica, 2015, 64(4): 040301. doi: 10.7498/aps.64.040301
    [9] Li Xi-Han. Quantum secure direct communication. Acta Physica Sinica, 2015, 64(16): 160307. doi: 10.7498/aps.64.160307
    [10] Yang Guang, Lian Bao-Wang, Nie Min. Characteristics of multi-hop noisy quantum entanglement channel and optimal relay protocol. Acta Physica Sinica, 2015, 64(24): 240304. doi: 10.7498/aps.64.240304
    [11] Ma Hong-Yang, Qin Guo-Qing, Fan Xing-Kui, Chu Peng-Cheng. Quantum network direct communication protocol over noisy channel. Acta Physica Sinica, 2015, 64(16): 160306. doi: 10.7498/aps.64.160306
    [12] Zhang Pei, Zhou Xiao-Qing, Li Zhi-Wei. Identification scheme based on quantum teleportation for wireless communication networks. Acta Physica Sinica, 2014, 63(13): 130301. doi: 10.7498/aps.63.130301
    [13] Yu Xu-Tao, Xu Jin, Zhang Zai-Chen. Routing protocol for wireless ad hoc quantum communication network based on quantum teleportation. Acta Physica Sinica, 2012, 61(22): 220303. doi: 10.7498/aps.61.220303
    [14] Quan Dong-Xiao, Pei Chang-Xing, Liu Dan, Zhao Nan. One-way deterministic secure quantum communication protocol based on single photons. Acta Physica Sinica, 2010, 59(4): 2493-2497. doi: 10.7498/aps.59.2493
    [15] Zhou Nan-Run, Zeng Bin-Yang, Wang Li-Jun, Gong Li-Hua. Selective automatic repeat quantum synchronous communication protocol based on quantum entanglement. Acta Physica Sinica, 2010, 59(4): 2193-2199. doi: 10.7498/aps.59.2193
    [16] Fu Bang, Deng Wen-Ji. General solutions to spin transportation of electrons through equilateral polygon quantum rings with Rashba spin-orbit interaction. Acta Physica Sinica, 2010, 59(4): 2739-2745. doi: 10.7498/aps.59.2739
    [17] Li Peng, Deng Wen-Ji. Exact solutions to the transportation of electrons through equilateral polygonal quantum rings with Rashba spin-orbit interaction. Acta Physica Sinica, 2009, 58(4): 2713-2719. doi: 10.7498/aps.58.2713
    [18] Zhou Nan-Run, Zeng Gui-Hua, Gong Li-Hua, Liu San-Qiu. Quantum communication protocol for data link layer based on entanglement. Acta Physica Sinica, 2007, 56(9): 5066-5070. doi: 10.7498/aps.56.5066
    [19] Wang Jian, Chen Huang-Qing, Zhang Quan, Tang Chao-Jing. Multiparty controlled quantum secure direct communication protocol. Acta Physica Sinica, 2007, 56(2): 673-677. doi: 10.7498/aps.56.673
    [20] Tang Zhi-Lie, Li Ming, Wei Zheng-Jun, Lu Fei, Liao Chang-Jun, Liu Song-Hao. The quantum key distribution system based on polarization states produced by phase modulation. Acta Physica Sinica, 2005, 54(6): 2534-2539. doi: 10.7498/aps.54.2534
Metrics
  • Abstract views:  7217
  • PDF Downloads:  106
  • Cited By: 0
Publishing process
  • Received Date:  04 March 2020
  • Accepted Date:  01 May 2020
  • Available Online:  25 May 2020
  • Published Online:  20 August 2020

/

返回文章
返回