-
In order to reduce power consumption and realize ultrafast response time and dynamic tunability, a plasmonic waveguide system based on four disk resonators is designed. A plasmon induced transparency effect is theoretically analyzed by using two different methods: one is the direct destructive interference between bright mode resonator and dark mode resonator, and the other is the indirect coupling through a plasmonic waveguide. Owing to the giant effective nonlinear Kerr coefficient of the graphene-Ag composite material structure and the enhancement characteristics of slow light response to optical Kerr effect, the pump intensity of PIT system for changing the phase shift of transmission spectrum is greatly reduced. An ultrafast response time of 1 ps is achieved, and 0.4π, 0.8π, 1.2π, 1.6π and 2π-phase shift of the transmission spectrum in the plasmon induced transparency system are achieved with the intensity of the pump light as low as 2.34, 4.68, 7.02, 9.36, 11.7 MW/cm–2, respectively. In this work, a plasmonic waveguide coupled directly by two small disk resonators is employed, because two small disk resonators play a role of the slit between the waveguide and the resonators, and also act as two separate resonators side-coupled with a plasmonic waveguide, which leads to the more efficient coupling of electromagnetic energy in the waveguide into the big disk resonators to form resonance and easier storage of light in the resonator. The triple-band plasmon induced transparency (PIT) effect and slow light properties of the model are analyzed by the expression of the deduced theoretical transmittance based on the coupled mode theory, indicating that they are very consistent with the finite-difference time-domain simulations. The results show that the transmission peak of the system is over 80% and the maximum group index is as high as 368. Furthermore, the disk resonators are easy to fabricate and the size of the entire PIT structure is < 0.5 μm2, which is beneficial to the design of optoelectronic device on-chip integration. The research results have important application prospects in highly integrating optical circuits and networks, and also provide the ideas for the design and fabrication of multi-channel optical filter and light storage devices with low power consumption, ultrafast nonlinear response, ultracompact and dynamical tunability.
-
Keywords:
- slow light /
- plasmon induced transparency /
- finite difference time domain /
- graphene
[1] Harris S E, Field J E, Imamoglu A 1990 Phys. Rev. Lett. 64 1107Google Scholar
[2] Kekatpure R D, Barnard E S, Cai W, Brongersma M L 2010 Phys. Rev. Lett. 104 243902Google Scholar
[3] Luk'yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H, Chong C T 2010 Nat. Mater. 9 707Google Scholar
[4] Zhao F, Lin J, Lei Z, Yi Z, Qin F, Zhang J, Liu L, Wu X, Yang W, Wu P 2022 Phys. Chem. Chem. Phys. 24 4871Google Scholar
[5] Lai G, Liang R S, Zhang Y J, Bian Z Y, Yi L X, Zhan G Z, Zhao R T 2015 Opt. Express 23 6554Google Scholar
[6] Wang B Y, Zeng Q D, Xiao S Y, Xu C, Xiong L B, Lv H, Du J, Yu H Q 2017 J. Phys. D: Appl. Phys. 50 455107Google Scholar
[7] 王波云, 朱子豪, 高有康, 曾庆栋, 刘洋, 杜君, 王涛, 余华清 2022 物理学报 71 024201Google Scholar
Wang B Y, Zhu Z H, Gao Y K, Zeng Q D, Liu Y, Du J, Wang T, Yu H Q 2022 Acta Phys. Sin. 71 024201Google Scholar
[8] Zeng Y, Ling Z X, Liu G D, Wang L L, Lin Q 2022 Opt. Express 30 14103Google Scholar
[9] Zheng Z, Luo Y, Yang H, Yi Z, Zhang J, Song Q, Yang W, Liu C, Wu X, Wu P 2022 Phys. Chem. Chem. Phys. 24 8846Google Scholar
[10] Huang H L, Xia H, Guo Z B, Li H J, Xie D 2018 Opt. Commun. 424 163Google Scholar
[11] Zhang S, Genov D A, Wang Y, Liu M, Zhang X 2008 Phys. Rev. Lett. 101 047401Google Scholar
[12] Zhang T, Liu Q, Dan Y H, Yu S, Han X, Dai J, Xu K 2020 Opt. Express 28 18899Google Scholar
[13] Liu Z M, Zhang X, Zhang Z B, Gao E D, Zhou F Q, Hong J L, Luo X 2020 New J. Phys. 22 083006Google Scholar
[14] Zheng Z, Zheng Y, Luo Y, Yi Z, Zhang J, Liu Z, Yang W, Yu Y, Wu X, Wu P 2022 Phys. Chem. Chem. Phys. 24 2527Google Scholar
[15] Zhang X, Zhou F Q, Liu Z M, Zhang Z B, Qin Y P, Zhuo S S, Luo X, Gao E D, Li H J 2021 Opt. Express 29 29387Google Scholar
[16] Zentgraf T, Zhang S, Oulton R F, Zhang X 2009 Phys. Rev. B 80 195415Google Scholar
[17] Wu X, Zheng Y, Luo Y, Zhang J, Yi Z, Wu X, Cheng S, Yang W, Yu Y, Wu P 2021 Phys. Chem. Chem. Phys. 23 26864Google Scholar
[18] Lu H, Liu X, Mao D 2012 Phys. Rev. A 85 053803Google Scholar
[19] Han X, Wang T, Li X, Xiao S, Zhu Y 2015 Opt. Express 23 31945Google Scholar
[20] Saraswat V, Jacobberger R M, Arnold M S 2021 ACS Nano 15 3674Google Scholar
[21] Zhou F, Qin F, Yi Z, Yao W, Liu Z, Wu X, Wu P 2021 Phys. Chem. Chem. Phys. 23 17041Google Scholar
[22] Zhang T, Zhou J Z, Dai J, Dai Y T, Han X, Li J Q, Yin F F, Zhou Y, Xu K 2018 J. Phys. D: Appl. Phys. 51 055103Google Scholar
[23] Nikolaenko A E, Papasimakis N, Atmatzakis E, Luo Z, Shen Z X, Angelis F D, Boden S A, Fabrizio E D, Zheludev N I 2012 Appl. Phys. Lett. 100 181109Google Scholar
[24] Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E 2009 Science 324 1312Google Scholar
[25] Suk J W, Kitt A, Magnuson C W, Hao Y, Ahmed S, An J, Swan A K, Goldberg B B, Ruoff R S 2011 ACS Nano 5 6916Google Scholar
[26] Wu J B, Jin B B, Wan J, Liang L J, Zhang Y G, Jia T, Cao C H, Kang L, Xu W W, Chen J, Wu P H 2011 Appl. Phys. Lett. 99 161113Google Scholar
[27] Lu H, Liu X, Wang L, Gong Y, Mao D 2011 Opt. Express 19 2910Google Scholar
[28] 褚培新, 张玉斌, 陈俊学 2020 物理学报 69 134205Google Scholar
Chu P X, Zhang Y B, Chen J X 2020 Acta Phys. Sin. 69 134205Google Scholar
[29] Lei F, Gao M, Du C, Jing Q L, Long G L 2015 Opt. Express 23 11508Google Scholar
[30] Zhu Y, Hu X Y, Yang H, Gong Q H 2014 Sci. Rep. 104 211108Google Scholar
[31] 陈颖, 谢进朝, 周鑫德, 张灿, 杨惠, 李少华 2019 物理学报 68 237301Google Scholar
Chen Y, Xie J C, Zhou X D, Zhang C, Yang H, Li S H 2019 Acta Phys. Sin. 68 237301Google Scholar
[32] Ren T X, Chen L 2019 Opt. Lett. 44 5446Google Scholar
[33] Ma Q L, Hong W Y, Shui L L 2022 Opt. Express 30 3055Google Scholar
[34] Wang B K, Guo T, Gai K, Yan F, Wang R X, Li L 2022 Appl. Opt. 61 3218Google Scholar
[35] Xu H, Xiong C X, Chen Z Q, Zheng M F, Zhao M Z, Zhang B H, Li H J 2018 J. Opt. Soc. Am. B 35 1463Google Scholar
[36] Han X, Wang T, Li X, Liu B, He Y, Tang J 2015 J. Phys. D:Appl. Phys. 48 235102Google Scholar
[37] Wang B Y, Zhu Y H, Zhang J, Zeng Q D, Du J, Wang T, Yu H Q 2020 Chin. Phys. B 29 084211Google Scholar
-
图 1 (a) 小盘形谐振腔直接耦合MIM波导的结构; (b) 小盘形谐振腔的半径r不同时, 结构的透射光谱 (图(b)插图为r = 65 nm、波长为749 nm时透射凹陷处的磁场分布)
Figure 1. (a) Schematic diagram of a small disk resonator directly coupled to a MIM waveguide; (b) transmission spectra of thestructure with the different radius of the small disk resonator r (The inset in panel (b) shows the magnetic field distribution at the transmission dip wavelength of 749 nm with r = 65 nm).
图 4 (a)—(c) 不同ΔR下系统的透射谱, 其中(a) ΔR = 6 nm, (b) ΔR = 4 nm, (c) ΔR = 2 nm; (d)—(j)当ΔR = 6 nm时, 系统在不同波长处的磁场分布, 其中(d) λI = 758 nm, (e) λII= 782 nm, (f) λIII = 803 nm, (g) λA = 747 nm, (h) λB = 773 nm, (i) λC = 789 nm, (j) λD = 811 nm
Figure 4. (a)–(c) Transmission spectra with various radius detuning ΔR: (a) ΔR = 6 nm; (b) ΔR = 4 nm; (c) ΔR = 2 nm. (d)–(j) Magnetic field distributions corresponding to different wavelengths with ΔR = 6 nm: (d) λI = 758 nm; (e) λII = 782 nm; (f) λIII = 803 nm; (g) λA = 747 nm; (h) λB = 773 nm; (i) λC = 789 nm; (j) λD = 811 nm.
图 7 不同泵浦光强调谐下, (a1)—(e1)三波段PIT效应归一化透射谱及(a2)—(e2)相应的相移响应和群折射率 (a1), (a2) I = 2.34 MW/cm2, Δϕ = 0.8π; (b1), (b2) I = 4.68 MW/cm2, Δϕ = 0.6π; (c1), (c2) I = 7.02 MW/cm2, Δϕ = 0.4π; (d1), (d2) I = 9.36 MW/cm2, Δϕ = 0.2π; (e1), (e2) I = 11.70 MW/cm2, Δϕ = 0
Figure 7. (a1)–(e1) Transmission spectra of tiple PIT effect with (a2)—(e2) corresponding phase shift responses and group indexunder different pump light intensity: (a1), (a2) I = 2.34 MW/cm2, Δϕ = 0.8π; (b1), (b2) I = 4.68 MW/cm2, Δϕ = 0.6π; (c1), (c2) I = 7.02 MW/cm2, Δϕ = 0.4π; (d1), (d2) I = 9.36 MW/cm2, Δϕ = 0.2π; (e1), (e2) I = 11.70 MW/cm2, Δϕ = 0.
-
[1] Harris S E, Field J E, Imamoglu A 1990 Phys. Rev. Lett. 64 1107Google Scholar
[2] Kekatpure R D, Barnard E S, Cai W, Brongersma M L 2010 Phys. Rev. Lett. 104 243902Google Scholar
[3] Luk'yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H, Chong C T 2010 Nat. Mater. 9 707Google Scholar
[4] Zhao F, Lin J, Lei Z, Yi Z, Qin F, Zhang J, Liu L, Wu X, Yang W, Wu P 2022 Phys. Chem. Chem. Phys. 24 4871Google Scholar
[5] Lai G, Liang R S, Zhang Y J, Bian Z Y, Yi L X, Zhan G Z, Zhao R T 2015 Opt. Express 23 6554Google Scholar
[6] Wang B Y, Zeng Q D, Xiao S Y, Xu C, Xiong L B, Lv H, Du J, Yu H Q 2017 J. Phys. D: Appl. Phys. 50 455107Google Scholar
[7] 王波云, 朱子豪, 高有康, 曾庆栋, 刘洋, 杜君, 王涛, 余华清 2022 物理学报 71 024201Google Scholar
Wang B Y, Zhu Z H, Gao Y K, Zeng Q D, Liu Y, Du J, Wang T, Yu H Q 2022 Acta Phys. Sin. 71 024201Google Scholar
[8] Zeng Y, Ling Z X, Liu G D, Wang L L, Lin Q 2022 Opt. Express 30 14103Google Scholar
[9] Zheng Z, Luo Y, Yang H, Yi Z, Zhang J, Song Q, Yang W, Liu C, Wu X, Wu P 2022 Phys. Chem. Chem. Phys. 24 8846Google Scholar
[10] Huang H L, Xia H, Guo Z B, Li H J, Xie D 2018 Opt. Commun. 424 163Google Scholar
[11] Zhang S, Genov D A, Wang Y, Liu M, Zhang X 2008 Phys. Rev. Lett. 101 047401Google Scholar
[12] Zhang T, Liu Q, Dan Y H, Yu S, Han X, Dai J, Xu K 2020 Opt. Express 28 18899Google Scholar
[13] Liu Z M, Zhang X, Zhang Z B, Gao E D, Zhou F Q, Hong J L, Luo X 2020 New J. Phys. 22 083006Google Scholar
[14] Zheng Z, Zheng Y, Luo Y, Yi Z, Zhang J, Liu Z, Yang W, Yu Y, Wu X, Wu P 2022 Phys. Chem. Chem. Phys. 24 2527Google Scholar
[15] Zhang X, Zhou F Q, Liu Z M, Zhang Z B, Qin Y P, Zhuo S S, Luo X, Gao E D, Li H J 2021 Opt. Express 29 29387Google Scholar
[16] Zentgraf T, Zhang S, Oulton R F, Zhang X 2009 Phys. Rev. B 80 195415Google Scholar
[17] Wu X, Zheng Y, Luo Y, Zhang J, Yi Z, Wu X, Cheng S, Yang W, Yu Y, Wu P 2021 Phys. Chem. Chem. Phys. 23 26864Google Scholar
[18] Lu H, Liu X, Mao D 2012 Phys. Rev. A 85 053803Google Scholar
[19] Han X, Wang T, Li X, Xiao S, Zhu Y 2015 Opt. Express 23 31945Google Scholar
[20] Saraswat V, Jacobberger R M, Arnold M S 2021 ACS Nano 15 3674Google Scholar
[21] Zhou F, Qin F, Yi Z, Yao W, Liu Z, Wu X, Wu P 2021 Phys. Chem. Chem. Phys. 23 17041Google Scholar
[22] Zhang T, Zhou J Z, Dai J, Dai Y T, Han X, Li J Q, Yin F F, Zhou Y, Xu K 2018 J. Phys. D: Appl. Phys. 51 055103Google Scholar
[23] Nikolaenko A E, Papasimakis N, Atmatzakis E, Luo Z, Shen Z X, Angelis F D, Boden S A, Fabrizio E D, Zheludev N I 2012 Appl. Phys. Lett. 100 181109Google Scholar
[24] Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E 2009 Science 324 1312Google Scholar
[25] Suk J W, Kitt A, Magnuson C W, Hao Y, Ahmed S, An J, Swan A K, Goldberg B B, Ruoff R S 2011 ACS Nano 5 6916Google Scholar
[26] Wu J B, Jin B B, Wan J, Liang L J, Zhang Y G, Jia T, Cao C H, Kang L, Xu W W, Chen J, Wu P H 2011 Appl. Phys. Lett. 99 161113Google Scholar
[27] Lu H, Liu X, Wang L, Gong Y, Mao D 2011 Opt. Express 19 2910Google Scholar
[28] 褚培新, 张玉斌, 陈俊学 2020 物理学报 69 134205Google Scholar
Chu P X, Zhang Y B, Chen J X 2020 Acta Phys. Sin. 69 134205Google Scholar
[29] Lei F, Gao M, Du C, Jing Q L, Long G L 2015 Opt. Express 23 11508Google Scholar
[30] Zhu Y, Hu X Y, Yang H, Gong Q H 2014 Sci. Rep. 104 211108Google Scholar
[31] 陈颖, 谢进朝, 周鑫德, 张灿, 杨惠, 李少华 2019 物理学报 68 237301Google Scholar
Chen Y, Xie J C, Zhou X D, Zhang C, Yang H, Li S H 2019 Acta Phys. Sin. 68 237301Google Scholar
[32] Ren T X, Chen L 2019 Opt. Lett. 44 5446Google Scholar
[33] Ma Q L, Hong W Y, Shui L L 2022 Opt. Express 30 3055Google Scholar
[34] Wang B K, Guo T, Gai K, Yan F, Wang R X, Li L 2022 Appl. Opt. 61 3218Google Scholar
[35] Xu H, Xiong C X, Chen Z Q, Zheng M F, Zhao M Z, Zhang B H, Li H J 2018 J. Opt. Soc. Am. B 35 1463Google Scholar
[36] Han X, Wang T, Li X, Liu B, He Y, Tang J 2015 J. Phys. D:Appl. Phys. 48 235102Google Scholar
[37] Wang B Y, Zhu Y H, Zhang J, Zeng Q D, Du J, Wang T, Yu H Q 2020 Chin. Phys. B 29 084211Google Scholar
Catalog
Metrics
- Abstract views: 3858
- PDF Downloads: 77
- Cited By: 0