-
Fiber lasers have been widely used in the industrial and scientific fields due to their advantages of high conversion efficiency, simple thermal management, and consistent stability. High brightness and high-power fiber lasers are affected by stimulated Raman scattering and transverse mode instability, which limits the power scaling of fiber lasers. Therefore, there are only a few researches achieving a 10 kW-level fiber laser system by laser diode direct pumping or tandem pumping. In this work, we demonstrate an all-fiber laser amplifier based on home-made low numerical aperture (NA) fiber pumped by 976 nm laser diodes. When the signal light is input to the gain fiber with a minimum bending diameter of 12 cm, the beam quality factor M2 is about 1.72. The onset of transverse mode instability (TMI) is observed at 2467 W output power, accompanied by beam quality degradation. In order to suppress the onset of TMI, the minimum bending diameter of the gain fiber is changed from 12 cm to 20 cm. And the signal light is input into the gain fiber with a bending diameter of 28 cm. Benefiting from this operation, the fiber laser amplifier achieves maximum output power of 10.53 kW with an optical-to-optical efficiency of 74.04%, and there is no TMI onset observed. However, increasing bending diameter inevitably leads the beam quality to degrade. At the maximum output power, the beam quality factor M2 is 2.88. To the best of our knowledge, this is the highest optical-to-optical efficiency and the best beam quality in 10 kW-level laser diodes pumping fiber lasers. Generally, it is believed that reducing bending diameter can suppress TMI by increasing high-order mode loss. However, this rule is not applicable to few-mode fiber lasers. A larger bending diameter leads more high-order modes to be contained in the signal light instead of leaking into the cladding area. Thus, a higher output and poor beam quality are obtained. Also, it is believed that tightly coiled fiber can make mode coupling easier and trigger off TMI, which results in a positive correlation between the TMI threshold and bending diameter. Low NA fibers are very sensitive to bending, and reducing the bend diameter to control the beam quality will result in lower efficiency and a lower TMI threshold. Therefore, although producing a 10 kW-level fiber laser is simple, maintaining good beam quality in the power scaling process is still a challenge. The results of this study will be a valuable reference for high power fiber laser design.
[1] 顾波 2020 金属加工(热加工) 10 37
Gu B 2020 Mach. Metal Forming 10 37
[2] Zervas M N, Codemard C A 2014 IEEE J. Sel. Top. Quantum Electron. 20 219Google Scholar
[3] Richardson D J, Nilsson J, Clarkson W A 2010 J. Opt. Soc. Amer. B 27 B63Google Scholar
[4] Zervas M N 2014 Int. J. Mod. Phys. B 28 1442009Google Scholar
[5] Jeong Y, Sahu J, Payne D, Nilsson J 2004 Opt. Express 12 6088Google Scholar
[6] O'Connor M, Gapontsev V, Fomin V, Abramov M, Ferin A 2009 Conference on Lasers and Electro-Optics Baltimore, USA, May 31–June 5, 2009 pCThA3
[7] Shiner B 2013 CLEO: Science and Innovations San Jose, USA, June 9–13, 2013 pAF2J.1
[8] 张春, 谢亮华, 楚秋慧, 刘玙, 黄珊, 宋华青, 吴文杰, 冯曦, 李敏, 沈本剑, 李昊坤, 陶汝茂, 许立新, 王建军 2022 强激光与粒子束 34 126
Zhang C, Xie L H, Chu Q H, Liu Y, Huang S, Song H Q, Wu W J, Feng X, Li M, Shen B J, Li H K, Tao R M, Xu L X, Wang J J 2022 High Power Laser and Part. Beams 34 126
[9] Yang B L, Wang P, Zhang H W, Xi X M, Shi C, Wang X L, Xu X J 2021 Opt. Express 29 26366Google Scholar
[10] Stihler C, Jauregui C, Tunnermann A, Limpert J 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) Munich, Germany, June 23–27, 2019 pp1-1
[11] Haarlammert N, Sattler B, Liem A, Strecker M, Nold J, Schreiber T, Eberhardt R, Tünnermann A, Ludewigt K, Jung M 2015 Opt. Lett. 40 2317Google Scholar
[12] Wan Y C, Yang B L, Wang P, Xi X M, Zhang H W, Wang X L 2021 J. Mod. Optic. 68 967Google Scholar
[13] Tao R M, Su R T, Ma P F, Wang X L, Zhou P 2016 Laser Phys. Lett. 14 25101Google Scholar
[14] Palmieri L, Galtarossa A 2014 IEEE Photon. J. 6 1Google Scholar
[15] Chu Q H, Tao R M, Lin H H, Wang J J, Jin F 2020 Sixth Symposium on Novel Optoelectronic Detection Technology and Applications Beijing, China, December 3–5, 2019 p1145545
[16] Wen Y J, Wang P, Shi C, Yang B L, Xi X M, Zhang H W, Wang X L 2022 IEEE Photon. J. 14 1Google Scholar
[17] 林傲祥, 湛欢, 彭昆, 王小龙, 倪力, 王瑜英, 李雨薇, 刘爽, 孙仕豪, 姜佳丽, 唐选, 刘玙, 姜蕾, 俞娟, 王建军, 景峰 2018 强激光与粒子束 30 7Google Scholar
Lin A X, Zhan H, Peng K, Wang X L, Ni L, Wang Y Y, Li Y W, Liu S, Sun S H, Jiang J L, Tang X, Liu Y, Jiang L, Yu J, Wang J J, Jin F 2018 High Power Laser Part. Beams 30 7Google Scholar
[18] 林宏奂, 唐选, 李成钰, 郭超, 刘玙, 赵鹏飞, 王波鹏, 王建军, 景峰 2018 中国激光 45 335
Lin H H, Tang X, Li C Y, Guo C, Liu Y, Zhao P F, Wang B P, Wang J J, Jin F 2018 Chin. J. Lasers 45 335
[19] 陈晓龙, 楼风光, 何宇, 王孟, 徐中巍, 郭晓晨, 叶韧, 张磊, 于春雷, 胡丽丽, 何兵, 周军 2019 光学学报 39 423
Chen X L, Lou F G, He Y, Wang M, Xu Z W, Guo X C, Ye R, Zhang L, Yu C L, Hu L L, He B, Zhou J 2019 Acta Optica Sin. 39 423
[20] 李峰云, 黎玥, 宋华青, 衣永青, 楚秋慧, 张昊宇, 黄珊, 郭超, 舒强, 颜冬林, 陶汝茂, 黄智蒙, 庞璐, 沈一泽, 史仪, 高聪, 刘念, 贺红磊, 李雨薇, 刘玙, 吴文杰, 王旗华, 温静, 汪卓, 林宏奂, 王建军, 景峰 2021 中国激光 48 192Google Scholar
Li F Y, Li Y, Song H Q, Yi Y Q, Chu Q H, Zhang H Y, Huang S, Guo C, Shu Q, Yan D L, Tao R M, Huang Z M, Pang L, Shen Y Z, Shi Y, Gao C, Liu N, He H L, Li Y W, Liu Y, Wu W J, Wang Q H, Wen J, Wang Z, Lin H H, Wang J J, Jin F 2021 Chin. J. Lasers 48 192Google Scholar
[21] Du S S, Qi T C, Li D, Yan P, Gong M L, Xiao Q R 2022 IEEE Photon. Technol. Lett. 14 1Google Scholar
[22] Shi J H, Wu J, Hu H W, Du T Y, Yan D P 2022 Eighth Symposium on Novel Photoelectronic Detection Technology and Applications Kunming, China, November 9–11, 2021, p121695J
[23] 衣永青, 刘君, 沈一泽, 李峰云, 韩志辉, 杨鹏, 庞璐, 林宏奂, 王建军 2022 中国激光 49 97
Yi Y Q, Liu J, Shen Y Z, Li F Y, Han Z H, Yang P, Pang L, Lin H H, Wang J J 2022 Chin. J. Lasers 49 97
[24] Marcuse D 1976 J. Opt. Soc. Am. 66 216Google Scholar
[25] Shi C, Su R T, Zhang H W, Yang B L, Wang X L, Zhou P, Xu X J, Lu Q S 2017 IEEE Photon. J. 9 1Google Scholar
-
图 3 小弯曲直径时光纤激光放大器输出特性 (a)输出功率与光光转换效率随泵浦功率的变化以及最高输出时光斑形态(插图); (b) 2543 W时输出光谱
Figure 3. Output characteristics of fiber laser amplifier at small bending diameter: (a) Output power and optical-to-optical efficiency versus pump power; the inset is beam profile at the highest output; (b) output spectrum at 2543 W.
图 5 大弯曲直径时光纤激光放大器输出特性 (a) 输出功率与光光转换效率随泵浦功率的变化; (b) 10530 W时输出光谱; (c) 10530 W时域信号与对应频谱; (d) 10530 W时的光束质量(D4σ表示光束强度轮廓横向能量分布的四倍标准差)
Figure 5. Output characteristics of fiber laser amplifier at big bending diameter: (a) Output power and optical-to-optical efficiency versus pump power; (b) output spectrum at 10530 W; (c) time domain signal and corresponding spectrum at 10530 W; (d) beam quality at 10530 W.
-
[1] 顾波 2020 金属加工(热加工) 10 37
Gu B 2020 Mach. Metal Forming 10 37
[2] Zervas M N, Codemard C A 2014 IEEE J. Sel. Top. Quantum Electron. 20 219Google Scholar
[3] Richardson D J, Nilsson J, Clarkson W A 2010 J. Opt. Soc. Amer. B 27 B63Google Scholar
[4] Zervas M N 2014 Int. J. Mod. Phys. B 28 1442009Google Scholar
[5] Jeong Y, Sahu J, Payne D, Nilsson J 2004 Opt. Express 12 6088Google Scholar
[6] O'Connor M, Gapontsev V, Fomin V, Abramov M, Ferin A 2009 Conference on Lasers and Electro-Optics Baltimore, USA, May 31–June 5, 2009 pCThA3
[7] Shiner B 2013 CLEO: Science and Innovations San Jose, USA, June 9–13, 2013 pAF2J.1
[8] 张春, 谢亮华, 楚秋慧, 刘玙, 黄珊, 宋华青, 吴文杰, 冯曦, 李敏, 沈本剑, 李昊坤, 陶汝茂, 许立新, 王建军 2022 强激光与粒子束 34 126
Zhang C, Xie L H, Chu Q H, Liu Y, Huang S, Song H Q, Wu W J, Feng X, Li M, Shen B J, Li H K, Tao R M, Xu L X, Wang J J 2022 High Power Laser and Part. Beams 34 126
[9] Yang B L, Wang P, Zhang H W, Xi X M, Shi C, Wang X L, Xu X J 2021 Opt. Express 29 26366Google Scholar
[10] Stihler C, Jauregui C, Tunnermann A, Limpert J 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) Munich, Germany, June 23–27, 2019 pp1-1
[11] Haarlammert N, Sattler B, Liem A, Strecker M, Nold J, Schreiber T, Eberhardt R, Tünnermann A, Ludewigt K, Jung M 2015 Opt. Lett. 40 2317Google Scholar
[12] Wan Y C, Yang B L, Wang P, Xi X M, Zhang H W, Wang X L 2021 J. Mod. Optic. 68 967Google Scholar
[13] Tao R M, Su R T, Ma P F, Wang X L, Zhou P 2016 Laser Phys. Lett. 14 25101Google Scholar
[14] Palmieri L, Galtarossa A 2014 IEEE Photon. J. 6 1Google Scholar
[15] Chu Q H, Tao R M, Lin H H, Wang J J, Jin F 2020 Sixth Symposium on Novel Optoelectronic Detection Technology and Applications Beijing, China, December 3–5, 2019 p1145545
[16] Wen Y J, Wang P, Shi C, Yang B L, Xi X M, Zhang H W, Wang X L 2022 IEEE Photon. J. 14 1Google Scholar
[17] 林傲祥, 湛欢, 彭昆, 王小龙, 倪力, 王瑜英, 李雨薇, 刘爽, 孙仕豪, 姜佳丽, 唐选, 刘玙, 姜蕾, 俞娟, 王建军, 景峰 2018 强激光与粒子束 30 7Google Scholar
Lin A X, Zhan H, Peng K, Wang X L, Ni L, Wang Y Y, Li Y W, Liu S, Sun S H, Jiang J L, Tang X, Liu Y, Jiang L, Yu J, Wang J J, Jin F 2018 High Power Laser Part. Beams 30 7Google Scholar
[18] 林宏奂, 唐选, 李成钰, 郭超, 刘玙, 赵鹏飞, 王波鹏, 王建军, 景峰 2018 中国激光 45 335
Lin H H, Tang X, Li C Y, Guo C, Liu Y, Zhao P F, Wang B P, Wang J J, Jin F 2018 Chin. J. Lasers 45 335
[19] 陈晓龙, 楼风光, 何宇, 王孟, 徐中巍, 郭晓晨, 叶韧, 张磊, 于春雷, 胡丽丽, 何兵, 周军 2019 光学学报 39 423
Chen X L, Lou F G, He Y, Wang M, Xu Z W, Guo X C, Ye R, Zhang L, Yu C L, Hu L L, He B, Zhou J 2019 Acta Optica Sin. 39 423
[20] 李峰云, 黎玥, 宋华青, 衣永青, 楚秋慧, 张昊宇, 黄珊, 郭超, 舒强, 颜冬林, 陶汝茂, 黄智蒙, 庞璐, 沈一泽, 史仪, 高聪, 刘念, 贺红磊, 李雨薇, 刘玙, 吴文杰, 王旗华, 温静, 汪卓, 林宏奂, 王建军, 景峰 2021 中国激光 48 192Google Scholar
Li F Y, Li Y, Song H Q, Yi Y Q, Chu Q H, Zhang H Y, Huang S, Guo C, Shu Q, Yan D L, Tao R M, Huang Z M, Pang L, Shen Y Z, Shi Y, Gao C, Liu N, He H L, Li Y W, Liu Y, Wu W J, Wang Q H, Wen J, Wang Z, Lin H H, Wang J J, Jin F 2021 Chin. J. Lasers 48 192Google Scholar
[21] Du S S, Qi T C, Li D, Yan P, Gong M L, Xiao Q R 2022 IEEE Photon. Technol. Lett. 14 1Google Scholar
[22] Shi J H, Wu J, Hu H W, Du T Y, Yan D P 2022 Eighth Symposium on Novel Photoelectronic Detection Technology and Applications Kunming, China, November 9–11, 2021, p121695J
[23] 衣永青, 刘君, 沈一泽, 李峰云, 韩志辉, 杨鹏, 庞璐, 林宏奂, 王建军 2022 中国激光 49 97
Yi Y Q, Liu J, Shen Y Z, Li F Y, Han Z H, Yang P, Pang L, Lin H H, Wang J J 2022 Chin. J. Lasers 49 97
[24] Marcuse D 1976 J. Opt. Soc. Am. 66 216Google Scholar
[25] Shi C, Su R T, Zhang H W, Yang B L, Wang X L, Zhou P, Xu X J, Lu Q S 2017 IEEE Photon. J. 9 1Google Scholar
Catalog
Metrics
- Abstract views: 4186
- PDF Downloads: 104
- Cited By: 0