Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Suppression effect of auxiliary laser on stimulated Raman scattering effect of high-power Yb-doped fiber laser amplifier

Zhao Wei Fu Shi-Jie Sheng Quan Xue Kai Shi Wei Yao Jian-Quan

Citation:

Suppression effect of auxiliary laser on stimulated Raman scattering effect of high-power Yb-doped fiber laser amplifier

Zhao Wei, Fu Shi-Jie, Sheng Quan, Xue Kai, Shi Wei, Yao Jian-Quan
cstr: 32037.14.aps.73.20240895
PDF
HTML
Get Citation
  • A novel technique to suppress the stimulated Raman scattering (SRS) effect in high-power ytterbium-doped fiber amplifier is proposed and theoretically investigated by introducing an auxiliary laser to manipulate the gain distribution in the amplifier.By injecting an auxiliary laser with shorter wavelength than the signal into the amplifier, the auxiliary laser, owing to its larger stimulated emission cross-section, initially extracts a significant portion of the laser gain. At this point, the gain of the longer-wavelength signal laser is suppressed to a certain extent. As the pump power is depleted in the rear segment of the gain fiber, the amplified auxiliary laser, which has larger absorption cross-section than the signal, is gradually absorbed by the active fiber and transfers its power to the signal laser. This process enhances the gain of the long-wavelength signal laser, enabling it to be rapidly amplified at the end of the amplifier. Compared with the amplification of the singular signal laser, the introduction of an extra auxiliary laser shifts the high-gain region of the signal laser to the rear portion of the amplifier, thereby reducing the effective length and alleviating the interaction strength between the signal laser and Stokes wave, in order to obtain a higher SRS threshold.The SRS threshold of a 20 μm/400 μm fiber amplifier is investigated by using numerical simulation under different wavelengths of the auxiliary laser and different power ratios of the signal laser to auxiliary laser. The results indicate that incorporating an auxiliary laser with an appropriate wavelength and power level can significantly reduce the interaction strength between the signal and Stokes wave, thereby enhancing the SRS threshold of the amplifier efficiently. Specifically, in a 1080 nm fiber amplifier utilizing a 20 μm/400 μm ytterbium-doped large mode area fiber, if the total power of the 1080 nm signal and 1040 nm auxiliary laser is set to 200 W, while with a power ratio of 1:25, the SRS threshold increasing from 3.14 kW (singular signal laser) to 8.42 kW can be anticipated. Moreover, based on the auxiliary laser amplification technique that suppresses the SRS effect, the output power enhancement of fiber lasers with the structure of master oscillator power amplifier (MOPA) is also analyzed. This technical solution is relatively straightforward to implement and can be seamlessly integrated with other techniques aimed at reducing the SRS effect, which is promising to promote further power scaling of all-fiber amplifier.
      Corresponding author: Fu Shi-Jie, shijie_fu@tju.edu.cn ; Shi Wei, shiwei@tju.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2022YFB3606000), the National Natural Science Foundation of China (Grant Nos. 62105240, 62275190, 62075159), the Key R&D Program of Shandong Province, China (Grants Nos. 2020CXGC010104, 2021CXGC010202), the Seed Foundation of Tianjin University, China (Grant No. 2023XPD-0020), the Open Foundation of Key Laboratory of Laser Devices and Technology of China North Industries Group Co., LTD (Grant No. QT23120019), and the Taishan Industry Leading Talent Project, China (Grant No. scx202312163).
    [1]

    Jauregur C, Limpert J, Tünnermann A 2013 Nat. Photonics 7 861Google Scholar

    [2]

    Richardson D J, Nilsson J, Clarkson W A 2010 J. Opt. Soc. Am. B: Opt. Phys. 27 B63Google Scholar

    [3]

    Shi W, Fang Q, Zhu X, Norwood R A, Peyghambarian N 2014 Appl. Opt. 53 6554Google Scholar

    [4]

    Zenteno L A, Wang J, Walton D T, Ruffin B A, Li M J 2005 Opt. Express 13 8921Google Scholar

    [5]

    Kim J, Dupriez P, Codemard C, Codemard C, Nilsson J, Sahu J K 2006 Opt. Express 14 5103Google Scholar

    [6]

    Nodop D, Jauregui C, Jansen F, Limpert, Tünnermann A 2010 Opt. Lett. 35 2982Google Scholar

    [7]

    Wang M, Zhang Y J, Wang Z F, Sun J J, Cao J Q, Leng J Y, Gu X J, Xu X J 2017 Opt. Express 25 1529Google Scholar

    [8]

    Hu Q H, Tian X, Zhao X F, Wang M, Xi X M, Wang Z F, Xu X J 2022 Opt Laser Technol. 150 107984Google Scholar

    [9]

    李昊, 陈金宝, 叶新宇, 王崇伟, 王蒙, 武柏屹, 肖虎, 陈子伦, 王泽峰 2024 中国激光 51 0215001Google Scholar

    Li H, Chen J B, Ye X Y, Wang C W, Wang M, Wu B Y, Xiao H, Chen Z L, Wang Z F 2024 Chin. J. Lasers 51 0215001Google Scholar

    [10]

    李昊, 叶新宇, 王蒙, 武柏屹, 高晨晖, 陈子伦, 王泽锋, 陈金宝 2023 光学学报 43 1714007Google Scholar

    Li H, Ye X Y, Wang M, Wu B Y, Gao C H, Chen Z L, Wang Z F, Chen J B 2023 Acta Opt. Sin. 43 1714007Google Scholar

    [11]

    Jiao K R, Shen H, Guan Z W, Yang F Y, Zhu R H 2020 Opt. Express 28 6048Google Scholar

    [12]

    Liu W, Ma P F, Lv H B, Xu J G, Zhou P, Jiang Z F 2016 Opt. Express 24 26715Google Scholar

    [13]

    Li T L, Ke W W, Ma Y, S Y H, Gao Q S 2019 J. Opt. Soc. Am. B: Opt. Phys. 36 1457Google Scholar

    [14]

    孟祥明, 杨保来, 奚小明, 王鹏, 史尘, 张汉伟, 王小林 2023 光学学报 43 1714001Google Scholar

    Meng X M, Yang B L, Xi X M, Wang P, Shi C, Zhang H W, Wang X L 2023 Acta Opt Sin 43 1714001Google Scholar

    [15]

    张春, 谢亮华, 楚秋慧, 刘玙, 黄珊, 宋华青, 吴文杰, 冯曦, 李敏, 沈本剑, 李昊坤, 陶汝茂, 许立新, 王建军 2022 强激光与粒子束 34 126Google Scholar

    Zhang C, Xie L H, Chu Q H, Liu Y, Huang S, Song H Q, Wu W J, Feng X, Li M, Shen B J, Li H K, Tao R M, Xu L X, Wang J J 2022 High Power Laser Part. Beams 34 126Google Scholar

    [16]

    Jauregui C, Limpert J, Tünnermann A 2009 Opt. Express 17 8476Google Scholar

    [17]

    Zheng J k, Zhao W, Zhao B Y, Li Z, Li G, Gao Q, Ju P, Gao W, She S F, Wu P 2018 Laser Phys. 28 105105Google Scholar

    [18]

    Ying H Y, Cao J Q, Yu Y, Wang M, Wang Z F, Chen J B 2017 Optik 144 163Google Scholar

    [19]

    罗亿, 王小林, 张汉伟, 粟荣涛, 马鹏飞, 周朴, 姜宗福 2017 物理学报 66 234206Google Scholar

    Luo Y, Wang X L, Zhang H W, Su R T, Ma P F, Zhou P, Jiang Z F 2017 Acta Physica. Sin. 66 234206Google Scholar

    [20]

    Lu Y, Han Z G, Shen H, Yan M J, Shen H, Zhu R H 2019 Proceeding of the 14th National Conference on Laser Technology and Optoelectronics Shanghai, China, March 17–20, 2019 p11170

    [21]

    Dawson J W, Messerly M J, Beach R J, Shverdin M Y, Stappaerts E A, Sridharan A K, Pax H P, Heebner J E, Sider C W, Barty C P J 2008 Opt. Express 16 13240Google Scholar

    [22]

    Zhu J J, Zhou P, Ma Y X, Xu X J, Liu Z J 2011 Opt. Express 19 18645Google Scholar

    [23]

    Zervas M N 2019 Opt. Express 13 19019Google Scholar

    [24]

    Dong L, Ballato J, Kolis J 2023 Opt. Express 27 6690Google Scholar

  • 图 1  掺镱光纤放大器中激光功率分布. 未注入辅助光情况下(a)信号光、泵浦光和(b) Stokes光随光纤长度的功率演化特性; 1080 nm信号光与泵浦光功率固定不变, 额外注入200 W的1050 nm辅助光, (c) 信号光、辅助光、泵浦光和(d) Stokes光功率演化特性

    Figure 1.  Laser power distribution in ytterbium-doped fiber amplifier. Power evolution characteristics of (a) signal, pump and (b) Stokes wave as a function of fiber length without injection of auxiliary laser; power evolution characteristics of (c) signal light, auxiliary light, pump light and (d) Stokes light when the powers of 1080 nm signal and pump light are fixed, an additional 200 W auxiliary light at 1050 nm is injected.

    图 2  辅助光波长为1050 nm时SRS效应阈值与信号/辅助光功率比的关系

    Figure 2.  SRS threshold as a function of signal and auxiliary laser power ratio when the auxiliary laser wavelength is 1050 nm.

    图 3  不同信号/辅助光功率比下掺镱光纤放大器中激光功率分布 (a), (b) 2∶1; (c), (d) 1∶3; (e), (f) 1∶6

    Figure 3.  Laser power distribution in ytterbium-doped fiber amplifier with different signal/auxiliary laser power ratios: (a), (b) 2∶1; (c), (d) 1∶3; (e), (f) 1∶6.

    图 4  SRS效应阈值与辅助光波长、功率占比的关系

    Figure 4.  SRS threshold as a function of auxiliary laser wavelength and power ratio with signal laser.

    图 5  掺镱光纤放大器在不同光纤尺寸下功率输出极限, SRS: 受激拉曼散射效应; TMI: 模式不稳定效应; Pump: 泵浦亮度 (a) 未注入辅助光时功率输出极限; (b) 注入辅助光后功率输出极限

    Figure 5.  Power scaling limit of ytterbium-doped fiber amplifiers under different fiber size. SRS: stimulated Raman scattering, TMI: transverse mode instability, Pump: pump brightness: (a) Output limit without auxiliary laser injection; (b) output limit after auxiliary laser injection.

    表 1  仿真参数

    Table 1.  Simulation parameters.

    ParameterValueParameterValue
    N0/(1025 m–3)5.2σes2/(10–25 m2)4.8
    λs1/nm1080λp/nm976
    λs2/nm1050gR/(10–13 m·W–1)0.53
    λR1/nm1132αs/m–10.003
    λR2/nm1101αp/m–10.005
    σas1/(10–27 m2)2.3αR/m–10.003
    σes1/(10–25 m2)2.8ΔλR/nm5[17]
    σas2/(10–26 m2)1.4Δλs/nm2[17]
    DownLoad: CSV
  • [1]

    Jauregur C, Limpert J, Tünnermann A 2013 Nat. Photonics 7 861Google Scholar

    [2]

    Richardson D J, Nilsson J, Clarkson W A 2010 J. Opt. Soc. Am. B: Opt. Phys. 27 B63Google Scholar

    [3]

    Shi W, Fang Q, Zhu X, Norwood R A, Peyghambarian N 2014 Appl. Opt. 53 6554Google Scholar

    [4]

    Zenteno L A, Wang J, Walton D T, Ruffin B A, Li M J 2005 Opt. Express 13 8921Google Scholar

    [5]

    Kim J, Dupriez P, Codemard C, Codemard C, Nilsson J, Sahu J K 2006 Opt. Express 14 5103Google Scholar

    [6]

    Nodop D, Jauregui C, Jansen F, Limpert, Tünnermann A 2010 Opt. Lett. 35 2982Google Scholar

    [7]

    Wang M, Zhang Y J, Wang Z F, Sun J J, Cao J Q, Leng J Y, Gu X J, Xu X J 2017 Opt. Express 25 1529Google Scholar

    [8]

    Hu Q H, Tian X, Zhao X F, Wang M, Xi X M, Wang Z F, Xu X J 2022 Opt Laser Technol. 150 107984Google Scholar

    [9]

    李昊, 陈金宝, 叶新宇, 王崇伟, 王蒙, 武柏屹, 肖虎, 陈子伦, 王泽峰 2024 中国激光 51 0215001Google Scholar

    Li H, Chen J B, Ye X Y, Wang C W, Wang M, Wu B Y, Xiao H, Chen Z L, Wang Z F 2024 Chin. J. Lasers 51 0215001Google Scholar

    [10]

    李昊, 叶新宇, 王蒙, 武柏屹, 高晨晖, 陈子伦, 王泽锋, 陈金宝 2023 光学学报 43 1714007Google Scholar

    Li H, Ye X Y, Wang M, Wu B Y, Gao C H, Chen Z L, Wang Z F, Chen J B 2023 Acta Opt. Sin. 43 1714007Google Scholar

    [11]

    Jiao K R, Shen H, Guan Z W, Yang F Y, Zhu R H 2020 Opt. Express 28 6048Google Scholar

    [12]

    Liu W, Ma P F, Lv H B, Xu J G, Zhou P, Jiang Z F 2016 Opt. Express 24 26715Google Scholar

    [13]

    Li T L, Ke W W, Ma Y, S Y H, Gao Q S 2019 J. Opt. Soc. Am. B: Opt. Phys. 36 1457Google Scholar

    [14]

    孟祥明, 杨保来, 奚小明, 王鹏, 史尘, 张汉伟, 王小林 2023 光学学报 43 1714001Google Scholar

    Meng X M, Yang B L, Xi X M, Wang P, Shi C, Zhang H W, Wang X L 2023 Acta Opt Sin 43 1714001Google Scholar

    [15]

    张春, 谢亮华, 楚秋慧, 刘玙, 黄珊, 宋华青, 吴文杰, 冯曦, 李敏, 沈本剑, 李昊坤, 陶汝茂, 许立新, 王建军 2022 强激光与粒子束 34 126Google Scholar

    Zhang C, Xie L H, Chu Q H, Liu Y, Huang S, Song H Q, Wu W J, Feng X, Li M, Shen B J, Li H K, Tao R M, Xu L X, Wang J J 2022 High Power Laser Part. Beams 34 126Google Scholar

    [16]

    Jauregui C, Limpert J, Tünnermann A 2009 Opt. Express 17 8476Google Scholar

    [17]

    Zheng J k, Zhao W, Zhao B Y, Li Z, Li G, Gao Q, Ju P, Gao W, She S F, Wu P 2018 Laser Phys. 28 105105Google Scholar

    [18]

    Ying H Y, Cao J Q, Yu Y, Wang M, Wang Z F, Chen J B 2017 Optik 144 163Google Scholar

    [19]

    罗亿, 王小林, 张汉伟, 粟荣涛, 马鹏飞, 周朴, 姜宗福 2017 物理学报 66 234206Google Scholar

    Luo Y, Wang X L, Zhang H W, Su R T, Ma P F, Zhou P, Jiang Z F 2017 Acta Physica. Sin. 66 234206Google Scholar

    [20]

    Lu Y, Han Z G, Shen H, Yan M J, Shen H, Zhu R H 2019 Proceeding of the 14th National Conference on Laser Technology and Optoelectronics Shanghai, China, March 17–20, 2019 p11170

    [21]

    Dawson J W, Messerly M J, Beach R J, Shverdin M Y, Stappaerts E A, Sridharan A K, Pax H P, Heebner J E, Sider C W, Barty C P J 2008 Opt. Express 16 13240Google Scholar

    [22]

    Zhu J J, Zhou P, Ma Y X, Xu X J, Liu Z J 2011 Opt. Express 19 18645Google Scholar

    [23]

    Zervas M N 2019 Opt. Express 13 19019Google Scholar

    [24]

    Dong L, Ballato J, Kolis J 2023 Opt. Express 27 6690Google Scholar

  • [1] Cao Jian-Qiu, Zhou Shang-De, Liu Peng-Fei, Huang Zhi-He, Wang Ze-Feng, Si Lei, Chen Jin-Bao. Theoretical study on radiation effect on threshold of transverse mode instability of Yb-doped fiber amplifiers. Acta Physica Sinica, 2024, 73(20): 204202. doi: 10.7498/aps.73.20240816
    [2] Xie Jing, Wang Li, Liu Chong, Zhang Yan-Li, Liu Qiang, Wang Tao, Chai Zhi-Hao, Xia Zhi-Qiang, Yang Lin, Zhang Pan-Zheng, Zhu Bao-Qiang. Improvement of fundamental frequency performance of SGII-UP laser facility. Acta Physica Sinica, 2023, 72(19): 194202. doi: 10.7498/aps.72.20230643
    [3] Liu Heng, Zhang Jun-Xiang, Fu Shi-Jie, Sheng Quan, Shi Wei, Yao Jian-Quan. Upper-laser-level lifetime measurement of rear earth dopant in active fiber. Acta Physica Sinica, 2019, 68(22): 224202. doi: 10.7498/aps.68.20190616
    [4] Liu Ya-Kun, Wang Xiao-Lin, Su Rong-Tao, Ma Peng-Fei, Zhang Han-Wei, Zhou Pu, Si Lei. Effect of phase modulation on linewidth and stimulated Brillouin scattering threshold of narrow-linewidth fiber amplifiers. Acta Physica Sinica, 2017, 66(23): 234203. doi: 10.7498/aps.66.234203
    [5] Liu Jiang, Liu Chen, Shi Hong-Xing, Wang Pu. 342 W narrow-linewidth continuous-wave thulium-doped all-fiber laser. Acta Physica Sinica, 2016, 65(19): 194209. doi: 10.7498/aps.65.194209
    [6] Liu Jiang, Liu Chen, Shi Hong-Xing, Wang Pu. 203 W all-polarization-maintaining picosecond thulium-doped all-fiber laser. Acta Physica Sinica, 2016, 65(19): 194208. doi: 10.7498/aps.65.194208
    [7] Tao Ru-Mao, Zhou Pu, Wang Xiao-Lin, Si Lei, Liu Ze-Jin. Experimental study on mode instability in high power all-fiber master oscillator power amplifer fiber lasers. Acta Physica Sinica, 2014, 63(8): 085202. doi: 10.7498/aps.63.085202
    [8] Jiang Man, Xiao Hu, Zhou Pu, Wang Xiao-Lin, Liu Ze-Jin. High power and low quantum-defect Yb-doped fiber amplifier based on tandem pumping. Acta Physica Sinica, 2013, 62(4): 044210. doi: 10.7498/aps.62.044210
    [9] Du Wen-Bo, Leng Jin-Yong, Zhu Jia-Jian, Zhou Pu, Xu Xiao-Jun, Shu Bo-Hong. Theoretical study of two-tone single frequency fiber amplifier with gain competition. Acta Physica Sinica, 2012, 61(11): 114203. doi: 10.7498/aps.61.114203
    [10] Xiao Hu, Leng Jin-Yong, Wu Wu-Ming, Wang Xiao-Lin, Ma Yan-Xing, Zhou Pu, Xu Xiao-Jun, Zhao Guo-Min. High efficiency tandem-pumped fiber amplifier. Acta Physica Sinica, 2011, 60(12): 124207. doi: 10.7498/aps.60.124207
    [11] Wang You-Wen, Deng Jian-Qin, Wen Shuang-Chun, Tang Zhi-Xiang, Fu Xi-Quan, Fan Dian-Yuan. Experimental study of the nonlinear hot image effect of broadband pulsed laser beams. Acta Physica Sinica, 2009, 58(3): 1738-1744. doi: 10.7498/aps.58.1738
    [12] Ren Guang-Jun, Wei Zhen, Zhang Qiang, Yao Jian-Quan. Study of Nd3+-doped polarization maintaining fiber amplifier. Acta Physica Sinica, 2009, 58(6): 3897-3902. doi: 10.7498/aps.58.3897
    [13] Liu Bo-Wen, Hu Ming-Lie, Song You-Jian, Chai Lu, Wang Qing-Yue. Sub-100 fs high power Yb-doped single polarization large-mode-area photonic crystal fiber laser amplifier. Acta Physica Sinica, 2008, 57(11): 6921-6925. doi: 10.7498/aps.57.6921
    [14] Zhao Zhen-Yu, Duan Kai-Liang, Wang Jian-Ming, Zhao Wei, Wang Yi-Shan. Experimental study of characteristics of high power photonic crystal fiber amplifier. Acta Physica Sinica, 2008, 57(10): 6335-6339. doi: 10.7498/aps.57.6335
    [15] Wang Chun-Can, Zhang Fan, Tong Zhi, Ning Ti-Gang, Jian Shui-Sheng. Study on the suppression of the stimulated Brillouin scattering in high-power single-frequency multicore fiber amplifier. Acta Physica Sinica, 2008, 57(8): 5035-5044. doi: 10.7498/aps.57.5035
    [16] Wang You-Wen, Hu Yong-Hua, Wen Shuang-Chun, You Kai-Ming, Fu Xi-Quan. Study of nonlinear hot image effect of Gaussian optical beams. Acta Physica Sinica, 2007, 56(10): 5855-5861. doi: 10.7498/aps.56.5855
    [17] Zheng Kai, Chang De-Yuan, Fu Yong-Jun, Wei Huai, Yan Feng-Ping, Jian Wei, Jian Shui-Sheng. Erbium-doped hole-assisted lightguide fiber: structural study and optimization. Acta Physica Sinica, 2007, 56(2): 958-967. doi: 10.7498/aps.56.958
    [18] Cheng Cheng, Zhang Hang. A semiconductor nanocrystal PbSe quantum dot fiber amplifier. Acta Physica Sinica, 2006, 55(8): 4139-4144. doi: 10.7498/aps.55.4139
    [19] Xie Liang-Ping, Zhao Jian-Lin, Su Jing-Qin, Jing Feng, Wang Wen-Yi, Peng Han-Sheng. Theoretical analysis of hot image effect from phase scatterer. Acta Physica Sinica, 2004, 53(7): 2175-2179. doi: 10.7498/aps.53.2175
    [20] Ji Xiao-Ling, Tao Xiang-Yang, Lü Bai-Da. The influence of thermal effects in a beam control system and spherical aberration on the laser beam quality. Acta Physica Sinica, 2004, 53(3): 952-960. doi: 10.7498/aps.53.952
Metrics
  • Abstract views:  857
  • PDF Downloads:  60
  • Cited By: 0
Publishing process
  • Received Date:  28 June 2024
  • Accepted Date:  10 September 2024
  • Available Online:  12 September 2024
  • Published Online:  20 October 2024

/

返回文章
返回