Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Radiation Effect on Threshold of Transverse Mode Instability of Yb-Doped Fiber Amplifiers: Theoretical Study

Cao Jian-Qiu Zhou Shang-De Liu Peng-Fei Huang Zhi-He Wang Ze-Feng Si Lei Chen Jin-Bao

Citation:

Radiation Effect on Threshold of Transverse Mode Instability of Yb-Doped Fiber Amplifiers: Theoretical Study

Cao Jian-Qiu, Zhou Shang-De, Liu Peng-Fei, Huang Zhi-He, Wang Ze-Feng, Si Lei, Chen Jin-Bao
PDF
Get Citation
  • Yb-doped fiber amplifiers and their applications in the radiation environment become more and more attractive in recent years. However, the radiation effect will do harm to the Yb-doped fibers, which can give negative effect on the output properties of Yb-doped fiber amplifiers.In this paper, the radiation effect on the transverse mode instability (TMI) of Yb-doped fiber amplifiers is studied. TMI can make the single light coupled from the fundamental mode to high-order mode, and thus degenerate the beam quality of fiber amplifier. TMI is considered as one key limitation of power up-scaling of fiber amplifiers.
    In this paper, the radiation effect on the TMI is studied theoretically, and a formula of TMI threshold is presented with the radiation-indued attenuation (RIA, the most important radiation effect for the TMI) into account. The formula is deduced by introducing the loss of signal light induced by RIA into the formerly reported TMI-threshold formula which can be obtained by the linear stability analysis of the numerical model studying the TMI. Then, the relationship between the TMI and radiation dose is also given with the help of Power-Law describing the relationship between the RIA and radiation dose.
    With the formula, the variations of TMI threshold with the radiation dose and RIA are studied. It is found, as expect, that the TMI threshold decreases monotonously with the increment of RIA or radiation dose. In spite of that, it is also found, unexpectedly to some extent, that the gain coefficient of fiber amplifiers will also affect the radiation effect on TMI threshold. The results reveal that the increment of gain coefficient will lower the sensitivity of TMI threshold to the radiation dose. In spite of that, it is also implied that the gain coefficient cannot be too large because it can also make the TMI threshold lowered. Therefore, the well-enough radiation resistance of Yb-doped fiber should be indispensable, in order to keep high TMI threshold in the radiation environment.
    Because the RIA cannot only affect the TMI threshold but can also affect the output power or efficiency of Yb-doped fiber amplifier, the comparison of two effects of RIA is also discussed. It is found that the TMI threshold is more sensitive to the radiation than the output power or efficiency (see the abstract figure). It means that the TMI can be present in the irradiated Yb-doped fiber amplifier, although the output power is lowered because of RIA. This result can be verified by the experimental observation formerly reported. As a result, TMI can become the key limitation to the output power of Yb-doped fiber amplifiers in the radiation environment. The pertinent results can provide significant guidance for the applications of Yb-doped fiber amplifiers in the radiation environment.
  • [1]

    Girard S, Kuhnhenn J, Gusarov A, Brichard B, Uffelen M V, Ouerdane Y, Boukenter A, Marcandella C 2013 IEEE Trans. Nucl. Sci. 60 2015

    [2]

    Girard S, Morana A, Ladaci A, Robin T, Mescia L, Bonnefois J-J, Boutillier M, Mekki J, Paveau A, Cadier B, Marin E, Ouerdane Y, Boukenter A 2018 J. Optics-UK 20 093001

    [3]

    Henschel H, Kohn O, Schmidt H U, Kirchof J, Unger S 1998 IEEE Trans. Nucl. Sci. 45 1552

    [4]

    Rose T S, Gunn D, Valley G C 2001 J. Lightw. Technol. 19 1918

    [5]

    Faustov A V, Gusarov A, Wuilpart M, Fotiadi A A, Liokumovich L B, Zolotovskiy I O, Tomashuk A L, Schoutheete T d, Mégret P 2013 IEEE Trans. Nucl. Sci. 60 2511

    [6]

    Ma J, Li M, Tan L, Zhou Y, Yu S, Ran Q 2009 Opt. Express 17 15571

    [7]

    Girard S, Ouerdane Y, Tortech B, Marcandella C, Robin T, Cadier B, Baggio J, Paillet P, Ferlet-Cavrois V, Boukenter A, Meunier J P, Schwank J R, Shaneyfelt M R, Dodd P E, Blackmore E W 2009 IEEE Trans. Nucl. Sci. 56 3293

    [8]

    Fox B P, Simmons-Potter K, Thomes W J, Kliner D A V 2010 IEEE Trans. Nucl. Sci. 57 1618

    [9]

    Duchez J-B, Mady F, Mebrouk Y, Ollier N, Benabdesselam M 2014 Opt. Lett. 39 5969

    [10]

    Xing Y B, Zhao N, Liao L, Wang Y B, Li H Q, Peng J G, Yang L Y, Dai N L, Li J Y 2015 Opt. Express 23 24236

    [11]

    Chen Y S, Xu H Z, Xing Y B, Liao L, Wang Y B, Zhang F F, He X L, Li H Q, Peng J G, Yang L Y, Dai N L, Li J Y 2018 Opt. Express 26 20430

    [12]

    Tao M M, Chen H W, Feng G B, Luan K P, Wang F, Huang K, Ye X S 2020 Opt. Express 28 10104

    [13]

    Tan S, Li Y, Zhang H S, Wang X W, Jin J 2022 Chin. Phys. B 31 064211

    [14]

    Shao C Y, Ren J J, Wang F, Ollier N, Xie F H, Zhang X Y, Zhang L, Yu C L, Hu L L 2018 J. Phys. Chem. B 122 2809

    [15]

    Kher S, Chaubey S, Oak S M, Gusarov A 2013 IEEE Photonic. Technol. Lett. 25 2070

    [16]

    Fernandez A F, Brichard B, Berghmans F 2003 IEEE Photonic. Technol. Lett. 15 1428

    [17]

    Eidam T, Wirth C, Jauregui C, Stutzki F, Jansen F, Otto H-J, Schmidt O, Schreiber T, Limpert J, Tünnermann A 2011 Opt. Express 19 13218

    [18]

    Beier F, Möller F, Sattler B, Nold J, Liem A, Hupel C, Kuhn S, Hein S, Haarlammert N, Schreiber T, Eberhardt R, Tünnermann A 2018 Opt. Lett. 43 1291

    [19]

    Dong L 2013 Opt. Express 21 2642

    [20]

    Tao R M, Wang X L, Zhou P 2018 IEEE J. Quant. Elect. 24 1

    [21]

    Dong L 2022 J. Lightw. Technol. 40 4795

    [22]

    Xia N, Yoo S 2020 J. Lightw. Technol. 38 4478

    [23]

    Zervas M N 2017 Proc. of SPIE 10083 100830M

    [24]

    Zervas M N 2018 APL Photonic. 4 022802

    [25]

    Zervas M N 2019 Opt. Express 27 19019

    [26]

    Dong L, Ballato J, Kolis J 2023 Opt. Express 31 6690

    [27]

    Cao J Q, Chen M N, Huang Z H, Wang Z F, Chen J B 2024 Opt. Express 32 12892

    [28]

    Kelson I, Hardy A A 1998 IEEE J. Quant. Elect. 34 1570

    [29]

    Jiang Z, Marciante J R 2008 J. Opt. Soc. Am. B 25 247

    [30]

    Richardson D J, Nilsson J, Clarkson W A 2010 J. Opt. Soc. Am. B 27 B63

    [31]

    Snyder A W, Love J D 1983 Optical Waveguide Theory (London: Chapman and Hall) pp254-255

    [32]

    Huang Z M, Shu Q, Luo Y, Tao R M, Feng X, Liu Y, Lin H H, Wang J J, Jing F 2021 J. Opt. Soc. Am. B 38 2945

    [33]

    Lezius M, Predehl K, Stower W, Turler A, Greiter M, Hoeschen C, Thirolf P, Assmann W, Habs D, Prokofiev A, Ekstrom C, Hansch T W, Holzwarth R 2012 IEEE Trans. Nucl. Sci. 59 425

    [34]

    Huang H Q, Zhao N, Chen G, Liao L, Liu Z J, Peng J G, Dai N L 2014 Acta Phys. Sin. 63 200201 (in Chinese) [黄宏琪,赵楠,陈瑰,廖雷,刘自军,彭景刚,戴能利 2005 物理学报 63 200201]

    [35]

    Fox B P, Schneider Z V, Simmons-Potter K, Thomes W J, Meister D C, Bambha R P, Kliner D A V 2008 IEEE J. Quant. Elect. 44 581

    [36]

    Fox B P, Simmons-Potter K, W. J. Thomes J, Meister D C, Bambha R P, Kliner D A V 2008 Proc. of SPIE San Diego, California, USA, August 10,2008

    [37]

    Hecht J 2009 Laser Focus World 12 52

    [38]

    Wang Y S, Peng W J, Liu H, Yang X B, Yu H M, Wang Y, Wang J, Feng Y J, Sun Y H, Ma Y, Gao Q S, Tang C 2023 Opt. Lett. 48 2909

  • [1] Zhao Wei, Fu Shi-Jie, Sheng Quan, Xue Kai, Shi Wei, Yao Jian-Quan. Research on SRS effect suppression by auxiliary laser in high power Yb-doped fiber laser amplifier. Acta Physica Sinica, doi: 10.7498/aps.73.20240895
    [2] Xue Bin-Tao, Zhang Li-Min, Liang Yong-Qi, Liu Ning, Wang Ding-Ping, Chen Liang, Wang Tie-Shan. Proton irradiation induced damage effects in CH3NH3PbI3-based perovskite solar cells. Acta Physica Sinica, doi: 10.7498/aps.72.20222100
    [3] Wen Yu-Jun, Wang Peng, Xi Xiao-Ming, Zhang Han-Wei, Huang Liang-Jin, Yang Huan, Yan Zhi-Ping, Yang Bao-Lai, Shi Chen, Pan Zhi-Yong, Wang Xiao-Lin, Wang Ze-Feng, Xu Xiao-Jun. Laser diode directly backward pumped high-beam-quality 10-kW fiber laser. Acta Physica Sinica, doi: 10.7498/aps.71.20221433
    [4] Peng Hai-Bo, Liu Feng-Fei, Zhang Bing-Tao, Zhang Xiao-Yang, Sun Meng-Li, Du Xin, Wang Peng, Yuan Wei, Wang Tie-Shan, Wang Jian-Wei. Comparative studies of irradiation effects in borosilicate glass and fused silica irradiated by energetic Xe ions. Acta Physica Sinica, doi: 10.7498/aps.67.20172117
    [5] Li Zhe-Fu, Jia Yan-Yan, Liu Ren-Duo, Xu Yu-Hai, Wang Guang-Hong, Xia Xiao-Bin. Irradiation effect of Sm2Co17 type permanent magnets. Acta Physica Sinica, doi: 10.7498/aps.66.226101
    [6] Cao Jian-Qiu, Liu Wen-Bo, Chen Jin-Bao, Lu Qi-Sheng. Modeling the single-mode thermally guiding very-large-mode-area Yb-doped fiber amplifier. Acta Physica Sinica, doi: 10.7498/aps.66.064201
    [7] Tao Ru-Mao, Zhou Pu, Wang Xiao-Lin, Si Lei, Liu Ze-Jin. Experimental study on mode instability in high power all-fiber master oscillator power amplifer fiber lasers. Acta Physica Sinica, doi: 10.7498/aps.63.085202
    [8] Huang Hong-Qi, Zhao Nan, Chen Gui, Liao Lei, Liu Zi-Jun, Peng Jing-Gang, Dai Neng-Li. Effects of γ-radiation on Yb-doped fiber. Acta Physica Sinica, doi: 10.7498/aps.63.200201
    [9] Sun Ya-Bin, Fu Jun, Xu Jun, Wang Yu-Dong, Zhou Wei, Zhang Wei, Cui Jie, Li Gao-Qing, Liu Zhi-Hong. Study on ionization damage of silicon-germanium heterojunction bipolar transistors at various dose rates. Acta Physica Sinica, doi: 10.7498/aps.62.196104
    [10] Du Wen-Bo, Leng Jin-Yong, Zhu Jia-Jian, Zhou Pu, Xu Xiao-Jun, Shu Bo-Hong. Theoretical study of two-tone single frequency fiber amplifier with gain competition. Acta Physica Sinica, doi: 10.7498/aps.61.114203
    [11] Gao Hui, Luo Shun-Zhong, Zhang Hua-Ming, Wang He-Yi. Investigation of a energy conversion silicon chip based on 63Ni radio-voltaic effect. Acta Physica Sinica, doi: 10.7498/aps.61.176101
    [12] Sheng Yu-Bang, Yang Lü-Yun, Luan Huai-Xun, Liu Zi-Jun, Li Jin-Yan, Dai Neng-Li. Gamma radiation effects on absorption and emission properties of erbium-doped silicate glasses. Acta Physica Sinica, doi: 10.7498/aps.61.116301
    [13] Xiao Hu, Leng Jin-Yong, Wu Wu-Ming, Wang Xiao-Lin, Ma Yan-Xing, Zhou Pu, Xu Xiao-Jun, Zhao Guo-Min. High efficiency tandem-pumped fiber amplifier. Acta Physica Sinica, doi: 10.7498/aps.60.124207
    [14] Jin Yu-Zhe, Hu Yi-Pei, Zeng Xiang-Hua, Yang Yi-Jun. Gamma radiation effect on GaN-based blue light-emitting diodes with multi-quantum well. Acta Physica Sinica, doi: 10.7498/aps.59.1258
    [15] Ren Guang-Jun, Wei Zhen, Zhang Qiang, Yao Jian-Quan. Study of Nd3+-doped polarization maintaining fiber amplifier. Acta Physica Sinica, doi: 10.7498/aps.58.3897
    [16] Zhang Lin, Han Chao, Ma Yong-Ji, Zhang Yi-Men, Zhang Yu-Ming. Gamma-ray radiation effect on Ni/4H-SiC SBD. Acta Physica Sinica, doi: 10.7498/aps.58.2737
    [17] Zhao Zhen-Yu, Duan Kai-Liang, Wang Jian-Ming, Zhao Wei, Wang Yi-Shan. Experimental study of characteristics of high power photonic crystal fiber amplifier. Acta Physica Sinica, doi: 10.7498/aps.57.6335
    [18] Qiao Hui, Liao Yi, Hu Wei-Da, Deng Yi, Yuan Yong-Gang, Zhang Qin-Yao, Li Xiang-Yang, Gong Hai-Mei. Real-time study of γ irradiation on Hg1-xCdxTe focal plane photodiodes. Acta Physica Sinica, doi: 10.7498/aps.57.7088
    [19] Cheng Cheng, Zhang Hang. A semiconductor nanocrystal PbSe quantum dot fiber amplifier. Acta Physica Sinica, doi: 10.7498/aps.55.4139
    [20] ZHANG TING-QING, LIU CHUAN-YANG, LIU JIA-LU, WANG JIAN-PING, HUANG ZHI, XU NA-JUN, HE BAO-PING, PENG HONG-LUN, YAO YU-JUAN. RADIATION EFFECTS OF MOS DEVICE AT LOW DOSE RATE AND LOW TEMPERATURE. Acta Physica Sinica, doi: 10.7498/aps.50.2434
Metrics
  • Abstract views:  84
  • PDF Downloads:  0
  • Cited By: 0
Publishing process
  • Available Online:  12 September 2024

/

返回文章
返回