搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

掺镱光纤激光器自漂白波长探究

陶蒙蒙 王亚民 王科 谌鸿伟 邵冲云 李乔木 叶景峰

引用本文:
Citation:

掺镱光纤激光器自漂白波长探究

陶蒙蒙, 王亚民, 王科, 谌鸿伟, 邵冲云, 李乔木, 叶景峰

Seeking the wavelength responsible for the photo-bleaching of Yb-doped fiber lasers

TAO Mengmeng, WANG Yamin, WANG Ke, CHEN Hongwei, SHAO Chongyun, LI Qiaomu, YE Jingfeng
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 辐射环境下,增益光纤的辐致损耗会引起激光器输出性能的退化。光漂白是降低辐射影响,恢复激光器输出特性的一种有效方法。文章对掺镱光纤激光器的辐照和光漂白特性开展了实验研究和模拟仿真。在伽马辐照实验中,激光器输出功率出现了明显下降;在漂白实验中,观察到了激光器的性能恢复,即自漂白现象。为了摸清产生漂白效应的具体激光波长,使用915 nm、976 nm、1070 nm和1550 nm等不同波长激光测试了掺镱光纤内部辐致损耗的漂白特性,明确了1 μm波段激光信号是引起掺镱光纤激光器性能恢复的主要因素,而915 nm、976 nm和1550 nm波段信号则无法实现对掺镱光纤的有效漂白。测量了不同泵浦功率下掺镱光纤的漂白曲线,并通过拟合得到了1070 nm光漂白下,掺镱光纤辐致损耗的演化参数。在此基础上,计算给出了在辐照和光漂白条件下,掺镱光纤内部辐致损耗的演化曲线;结合激光器的辐射物理模型,仿真给出了掺镱光纤激光器的功率演化曲线;相关计算和仿真结果与实验测量数据变化趋势一致。相关工作可为光纤激光器在辐射和漂白条件下性能演化预估提供技术支撑。
    In radiation environments, the radiation induced attenuation (RIA) of the active fiber will induce severe performance degradation to the fiber laser system. One effective way to solve this problem is to bleach the active fiber with pumps at certain wavelengths, namely photo-bleaching. Experiments have shown that, output power of irradiated Yb-doped fiber lasers experiences remarkable recovery with 976 nm pump. However, under 976 nm pump, signals at both 976 nm and 1070 nm co-exist inside of the Yb-doped fiber. And, it can hardly tell which wavelength is responsible for the photo-bleaching process. Here, a one-hundred level Yb-doped fiber laser is irradiated with gamma-ray radiation. During the radiation process, significant output decline from 129 W at 0 Gy to 81 W at 100 Gy is witnessed. Then, self-bleaching test is conducted with 976 nm pump. After 2 h of bleaching, the output power restored to 111 W, corresponding to a recovery ratio of about 37.0%. To verify the specific wavelength responsible for the performance recovery, photo-bleaching characteristics of Yb-doped fiber lasers are investigated under different pump wavelengths including 915 nm, 976 nm, 1070 nm and 1550 nm. Experiments show that, laser signal at 1 μm waveband is the primary cause for the bleaching of Yb-doped fibers, while, the pump at 915 nm, 976 nm and 1550 nm can hardly bleach the irradiated Yb-doped fiber. The RIA recovery curves of Yb-doped fibers under different 1070 nm bleaching powers are measured. And, related evolution parameters are obtained through curve fitting. With these parameters, the RIA evolution of the Yb-doped fiber and the corresponding output power evolution of the Yb-doped fiber laser during the radiation and bleaching process are simulated. Comparisons show that, the numerical results are consistent with the experiments qualitatively, demonstrating the reliability of the model. This work should be instructive for the performance prediction of fiber laser systems under radiation and bleaching environments.
  • [1]

    Liu F H, Wang P, Liu W P, Xie H G, Feng G, Chen S W, Wu J J 2015 Mod. Appl. Phys. 6 202 (in Chinese) [刘福华, 王平, 刘卫平, 谢红刚, 冯刚, 陈绍武, 武俊杰 2015 现代应用物理 6 202]

    [2]

    Girard S, Alessi A, Richard N, Martin-Samos L, Michele V D, Giacomazzi L, Agnello S, Francesca D D, Morana A, Winkler B, Reghioua I, Paillet P, Cannas M, Robin T, Boukenter A, Ouerdane Y 2019 Rev. Phys. 4 100032

    [3]

    Girard S, Kuhnhenn J, Gusarov A, Brichard B, Uffelen M V, Ouerdan Y, Boukenter A, Marcandella C 2013 IEEE Trans. Nucl. Sci. 60 2015

    [4]

    Lezius M, Predehl K, Stöwer W, Turler A, Greiter M, Hoeschen Ch, Thirolf P, Assmann W, Habs D, Prokofiev A, Ekstron C, Hansch T W, Holzwarth R 2012 IEEE Trans. Nucl. Sci. 59 425

    [5]

    Li F F, Zhou X Y, Zhang K B, Chen J Z, Gao C, Zhang L H, Shi Zh H, Xia H D, Ye X, Wu W D, Li B 2020 High Power Laser and Particle Beams 32 081003 (in Chinese) [李奋飞, 周晓燕, 张魁宝, 陈进湛, 高聪, 张立华, 石兆华, 夏汉定, 叶鑫, 吴卫东, 李波 2020 强激光与粒子束 32 081003]

    [6]

    Shao Ch Y, Yu Ch L, Hu L L 2020 Chin. J. Lasers 47 0500006 (in Chinese) [邵冲云, 于春雷, 胡丽丽. 2020 中国激光 47 0500006]

    [7]

    Chi J J, Jiang Sh Q, Zhang L, Yu M, Wang J L 2018 Laser&Optoelectronics Progress 55 061406 (in Chinese) [池俊杰, 姜诗琦, 张琳, 于淼, 王军龙 2018 激光与光电子学进展55 061406]

    [8]

    Zhang H W, Wang X L, Tang F, Liu W G, Liu P Y, Xu X J, Xiao Y Zh, Chen J B 2020 Laser&Optoelectronics Progress 57 011406 (in Chinese) [张汉伟, 王小林, 唐峰, 刘文广, 刘鹏宇, 许晓军, 肖余之, 陈金宝 2020 激光与光电子学进展 57 011406]

    [9]

    Chen Y Sh, Xu H Zh, Xing Y B, Liao L, Wang Y B, Zhang F F, He X L, Li H Q, Peng J G, Yang L Y, Dai N L, Li J Y 2018 Opt. Express 26 20430

    [10]

    Wang Y, Gao C, Peng K, Ni L, Wang X, Zhan H, Li Y, Jiang L, Lin A, Wang J, Jing F 2018 Proceedings of 2018 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR) Hong Kong, China, July 29-August 3, 2018 p. F1B.2

    [11]

    Cao J, Zhou S, Liu P, Huang Zh, Wang Z, Si L, Chen J 2024 Acta. Phys. Sin. 73 204202 (in Chinese) [曹涧秋, 周尚德, 刘鹏飞, 黄值河, 王泽锋, 司磊, 陈金宝 2024 物理学报73 204202]

    [12]

    Xiang G, Chen J, Wang X, Ye Y, Zhang H, Zhang J, Hua W 2024 Opt. Lett. 49 6301

    [13]

    Girard S, Morana A, Ladaci A, Robin T, Mescia L, Bonnefois J, Boutillier M, Mekki J, Paveau A, Cadier B, Marin E, Ouerdane Y, Boukenter A 2018 J. Opt. 20 093001

    [14]

    Wang B, Cao C, Xing Y B, Chen G, Dai N L, Li H Q, Peng J G, Li J Y 2021 Laser & Optoelectronic Progress 58 1516012 (in Chinese) [王博, 曹驰, 邢颍滨, 陈瑰, 戴能利, 李海清, 彭景刚, 李进延 2021 激光与光电子学进展 58 1516012]

    [15]

    Shao C, Yu C, Zhu Y, Zhou Q, Boulon G, Guzik M, Chen W, Hu L 2022 J. Lumin. 248 118939

    [16]

    Fox B P, Simmons-Potter K, Moore S W, Fisher J H, Meister D C 2009 Proceedings of SPIE 7434 p.74340C

    [17]

    Mady F, Guttilla A, Benabdesselam M, Blanc W 2019 Opt. Mat. Express 9 2466

    [18]

    Xing Y, Liu Y, Zhao N, Cao R, Wang Y, Yang Y, Peng J, Li H, Yang L, Dai N, Li J 2018 Opt. Lett. 43 1075

    [19]

    Xing Y, Liu Y, Cao R, Liao L, Chu Y, Wang Y, Peng J, Li H, Yang L, Dai N, Li J 2018 OSA Contin. 1 987

    [20]

    Manek-Hönninger I, Boullet J, Cardinal T, Guillen F, Ermeneux S, Podgorski M, Doua R, Salin F 2007 Opt. Express 15 1606

    [21]

    Chávez A, Kir'Yanov A, Barmenkov Y, Ilichev N N 2007 Laser Phys. Lett. 4 734

    [22]

    Gebavi H, Taccheo S, Lablonde L, Cadier B, Robin T, Mechin D, Tregoat D 2013 Opt. Lett. 38 196

    [23]

    Piccoli R, Gebavi H, Lablonde L, Cadier B, Robin T, Monteville A, Goffic O L, Landais D, Mechin D, Milanese D, Brand T, Taccheo S 2014 IEEE Photonic. Technol. Lett. 26 50

    [24]

    Piccoli R, Robin T, Brand T, Kolotzbach U, Taccheo S 2014 Opt. Express 22 7638

    [25]

    Zhao N, Xing Y, Li J, Liao L, Wang Y, Peng J, Yang L, Dai N, Li H, Li J 2015 Opt. Express 23 25272

    [26]

    Liu Ch P 2017 M. S. Thesis (Wuhan: Huazhong University of Science & Technology) (in Chinese) [刘超平 2017 硕士学位论文 (武汉: 华中科技大学)]

    [27]

    Friebele E J, Gingerich M E. 1981 Appl. Opt. 20 3448

    [28]

    Zotov K V, Likhachev M E, Tomashuk A L, Kosolapov A F, Bubnov M M, Yashkov M V, Guryanov A N, Dianov E M 2008 IEEE Photonic. Technol. Lett. 20 1476

    [29]

    Xing Y, Huang H, Zhao N, Liao L, Li J, Dai N 2015 Opt. Lett. 40 681-684

    [30]

    Xing Y, Zhao N, Liao L, Wang Y, Li H, Peng J, Yang L, Dai N, Li J 2015 Opt. Express 23 24236

    [31]

    Wang X, Sun Sh, Zheng Y, Yu M, Li S, Cao Y, Wang J 2023 Appl. Sci. 13 6146

    [32]

    Xiang G, Zhang H, Wang X, Zhang J, Chen H, Lin Ch, Ye Y, Hua W, Chen J 2025 Photonics Res. 13 2362

    [33]

    Chen J, Xiang G, Wang X, Zhang H, Zhang J, Hua W 2024 High Power Laser and Particle Beams 36 121001 (in Chinese) [陈金宝, 相广彪, 王小林, 张汉伟, 张江彬, 华卫红 2024 强激光与粒子束 36 121001]

    [34]

    Xiang G, Wu J, Zhang H, Zhang J, Chen H, Wang Y, Wang X, Hua W 2025 IEEE Trans. Nucl. Sci. 72 11

    [35]

    Deschamps T, Vezin H, Gonnet C, Ollier N 2013 Opt. Express 21 8382

    [36]

    Shao Ch, Ren J, Wang F, Ollier N, Xie F, Zhang X, Zhang L, Yu Ch, Hu L 2018 J. Phys. Chem. B 122 2809

    [37]

    Zhang Y, Wang G, Zhao T, Zhang Y, Gao S, Cui X, Zhu Zh, Li Zh, She Sh, Hou Ch, Guo H 2025 J. Lightwave Technol. 43 3899

    [38]

    Tao M, Chen H, Feng G, Luan K, Wang F, Huang K, Ye X 2020 Opt. Express 28 10104

    [39]

    Wang K, Wang Y, Tao M, Cao H, Chen H, Ye J, Shen Y, Wang D 2024 Opt. Commun. 560 130472

    [40]

    Jetschke S, Unger S, Ropke U, Kirchhof J 2007 Opt. Express 15 14838-14843

    [41]

    Jetschke S, Ropke U 2009 Opt. Lett. 34 109

    [42]

    Xie F, Shao Ch, Wang M, Lou F, Liu M, Yu Ch, Feng S, Ye X, Hu L 2019 J. Lightwave Tchnol. 37 1091

    [43]

    Arai T, Ichii K, Tanigawa S, Fujimaki M 2009 Proceedings of 2009 Conference on Optical Fiber Communication, Technical Digest Series 2009 p. OWT2

    [44]

    Tao M, Chen H, Feng G, Wang L, Ye J, Wang Y, Ye X, Chen W 2022 Laser Phys. 32 055101

    [45]

    Tao M, Wang Y, Wang K, Chen H, Ye J, Shen Y, Wang D, Ye X 2025 J. Opt. 54 867-878

  • [1] 蒋沛恒, 史朝督, 付士杰, 田浩, 盛泉, 史伟, 沈琪皓, 周鼎富, 姚建铨. 基于种子脉冲预整形的130 μJ线偏振单频12 μm纤芯铒镱共掺光纤激光器. 物理学报, doi: 10.7498/aps.74.20241371
    [2] 曹涧秋, 周尚德, 刘鹏飞, 黄值河, 马鹏飞, 王泽锋, 司磊, 陈金宝. 辐致损耗对单频单模掺镱光纤放大器功率提升的影响. 物理学报, doi: 10.7498/aps.74.20250418
    [3] 曹涧秋, 周尚德, 刘鹏飞, 黄值河, 王泽锋, 司磊, 陈金宝. 辐照效应对于掺镱光纤放大器模式不稳定阈值影响的理论研究. 物理学报, doi: 10.7498/aps.73.20240816
    [4] 文榆钧, 王鹏, 奚小明, 张汉伟, 黄良金, 杨欢, 闫志平, 杨保来, 史尘, 潘志勇, 王小林, 王泽锋, 许晓军. 激光二极管直接后向泵浦的高光束质量万瓦光纤激光器. 物理学报, doi: 10.7498/aps.71.20221433
    [5] 曹涧秋, 刘文博, 陈金宝, 陆启生. 单模热致超大模场掺镱光纤放大器的数值研究. 物理学报, doi: 10.7498/aps.66.064201
    [6] 熊中龙, 吴妍, 景锐平, 马冲, 龙蔚辉, 张超军, 程永进. 掺Yb硅酸盐玻璃的热漂白性能研究. 物理学报, doi: 10.7498/aps.65.044208
    [7] 贾玉磊, 朱政, 韩海年, 田文龙, 谢阳, 张龙, 魏志义. 掺镱硼酸钙氧钇飞秒激光器及在拉锥光纤中产生跨倍频程超连续光. 物理学报, doi: 10.7498/aps.64.054206
    [8] 傅宽, 徐中巍, 李海清, 彭景刚, 戴能利, 李进延. 石墨烯被动锁模全正色散掺镱光纤激光器中的暗脉冲及其谐波. 物理学报, doi: 10.7498/aps.64.194205
    [9] 王玉宝, 齐晓辉, 沈阳, 姚繄蕾, 徐志敬, 潘玉寨. 超长腔碳纳米管锁模多波长掺镱光纤激光器. 物理学报, doi: 10.7498/aps.64.204205
    [10] 黄宏琪, 赵楠, 陈瑰, 廖雷, 刘自军, 彭景刚, 戴能利. γ射线辐照对掺Yb光纤材料性能的影响. 物理学报, doi: 10.7498/aps.63.200201
    [11] 黄诗盛, 王勇刚, 李会权, 林荣勇, 闫培光. 氧化石墨烯被动锁模掺镱光纤激光器多脉冲现象的实验研究. 物理学报, doi: 10.7498/aps.63.084202
    [12] 徐中巍, 张祖兴. 全正色散多波长被动锁模耗散孤子掺镱光纤激光器. 物理学报, doi: 10.7498/aps.62.104210
    [13] 白扬博, 向望华, 祖鹏, 张贵忠. 基于体光栅的被动锁模可调谐线型腔掺镱光纤激光器. 物理学报, doi: 10.7498/aps.61.214208
    [14] 韩旭, 冯国英, 武传龙, 姜东升, 周寿桓. 掺镱光纤激光器自脉冲与自脉冲内的自锁模研究. 物理学报, doi: 10.7498/aps.61.114204
    [15] 盛于邦, 杨旅云, 栾怀训, 刘自军, 李进延, 戴能利. 辐照对掺Er硅酸盐玻璃吸收和发光特性的影响. 物理学报, doi: 10.7498/aps.61.116301
    [16] 刘越, 张巍, 冯雪, 刘小明. 损耗调制型掺铒光纤环形激光器混沌现象的实验研究. 物理学报, doi: 10.7498/aps.58.2971
    [17] 任广军, 张 强, 王 鹏, 姚建铨. 掺钕保偏光纤激光器的研究. 物理学报, doi: 10.7498/aps.56.3917
    [18] 刘艳格, 张春书, 孙婷婷, 鲁云飞, 王 志, 袁树忠, 开桂云, 董孝义. 输出平均功率大于2W的高功率、包层抽运、超短脉冲铒镱共掺光纤激光器. 物理学报, doi: 10.7498/aps.55.4679
    [19] 王勇刚, 马骁宇, 付圣贵, 范万德, 李 强, 袁树忠, 董孝义, 宋晏蓉, 张志刚. 离子注入GaAs实现双包层掺镱光纤激光器被动调Q锁模. 物理学报, doi: 10.7498/aps.53.1810
    [20] 孙军强, 黄德修, 李再光. 掺铒光纤激光器的自持脉冲. 物理学报, doi: 10.7498/aps.45.960
计量
  • 文章访问数:  165
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-09-05

/

返回文章
返回