-
Silicon photomultipliers (SiPMs) have been widely used in the field of weak light detection. However, SiPMs utilizing small-sized Geiger-mode avalanche photodiode (G-APD) cells face the limitations due to a restricted effective geometric fill sactor (GFF), which leads to relatively low photon detection efficiency (PDE), and additionally, constrained by the intrinsic properties of silicon materials, their PDE in the near-infrared band is also relatively insufficient. To address the above issues, this work proposes a regional optical field modulation approach based on topological photonic crystals (TPCs), aiming to improve the PDE of SiPMs without modifying their internal structure. Through COMSOL electromagnetic wave frequency-domain simulation, the multi-band synergistic mechanism of dead-zone topological edge state guidance, photosensitive region slow-light effect, and Bragg scattering is revealed. In the 460–700 nm band, the honeycomb lattice in the dead zone induces topological edge states via Floquet periodic analysis, while the periodic dielectric distribution of the lattice excites Bragg scattering to reduce photon reflection loss at the metal surface and precisely couples photons to the photosensitive region, leading to an increase in effective GFF from 46.4% to 63.1% at 621 nm. In the 700–1100 nm band, the periodic dielectric distribution of the honeycomb lattice further excites Bragg resonance to reduce metal surface reflection loss, and simultaneously, the multiple scattering mechanism substantially extends the propagation path of photons in the dead zone to improve the coupling probability with the photosensitive region. The designed periodic silicon pillar structure in the photosensitive region effectively extends the lateral propagation path of photons through the slow-light effect, while Bragg scattering reduces reflection loss, resulting in a significant increase in absorption efficiency from 41.19% to 51.37% at 900 nm. Simulation results show that this design scheme increases the average PDE of SiPMs by 50% in the 460–1100 nm band (with a peak value of 81%) and can be implemented via mainstream etching processes (electron beam lithography + reactive ion etching). Compared with traditional microlens and plasmonic structures, TPCs exhibit significant advantages in broad-spectrum response and process simplification. This work provides a new topological photonics approach for photon recycling and PDE enhancement of SiPMs.
-
Keywords:
- silicon photomultiplier /
- photon detection efficiency /
- topological photonic crystal /
- slow-light effect
-
图 1 SiPM表面构建拓扑光子晶体原理示意图 (a) SiPM三维结构示意图; (b) 近距离俯视图; (c) 拓扑绝缘光子晶体示意图(近距离); (d) 表面具有拓扑光子晶体的SiPM二维剖面示意图; (e) TPC二维晶格示意图; (f) Floquet周期性分析示意图; (g) 光子在TPC中传播示意图
Figure 1. Schematic diagrams of the principle of constructing topological photonic crystals on the surface of SiPM: (a) Schematic diagram of the three-dimensional structure of SiPM; (b) close-up top view; (c) schematic diagram of topological insulating photonic crystal (close-up); (d) two-dimensional cross-sectional schematic diagram of SiPM with topological photonic crystals on the surface; (e) schematic diagram of TPC two-dimensional lattice; (f) schematic diagram of Floquet periodicity analysis; (g) schematic diagram of photon propagation in TPC.
图 2 拓扑绝缘光子晶体单个晶格结构的能带图 (a) R = a0/3; (b) R = a0/2.9; (c) R = a0/3.1; (d) 边界态; (e) 布拉格散射体态; (f) 纯体态电场模分布(单位: V)
Figure 2. Energy band diagrams of a single lattice structure of topological insulating photonic crystals: (a) R = a0/3; (b) R = a0/2.9; (c) R = a0/3.1; (d) boundary state; (e) Bragg scattering bulk state; (f) electric field mode distribution of pure bulk state (unit: V).
图 4 不同波长下死区构建TPC的电场模分布图(单位: V) (a) 450 nm; (b) 550 nm; (c) 621 nm; (d) 650 nm; (e) 700 nm; (f) 800 nm; (g) 900 nm; (h) 1100 nm; (i) 621 nm波长下的边界态传播
Figure 4. Electric field mode distribution diagrams of TPC constructed in the dead zone (unit: V) at different wavelengths: (a) 450 nm; (b) 550 nm; (c) 621 nm; (d) 650 nm; (e) 700 nm; (f) 800 nm; (g) 900 nm; (h) 1100 nm; (i) boundary state propagation at 621 nm wavelength.
图 5 不同波长下光敏区构建TPC的电场模分布图(单位: V) (a) 460 nm; (b) 550 nm; (c) 650 nm; (d) 700 nm; (e) 900 nm; (f) 1100 nm
Figure 5. Electric field mode distribution diagrams of TPC constructed in the photosensitive region (unit: V) at different wavelengths: (a) 460 nm; (b) 550 nm; (c) 650 nm; (d) 700 nm; (e) 900 nm; (f) 1100 nm.
表 1 提升SiPM PDE的方法对比
Table 1. Comparison of methods for improving the PDE of SiPM.
表 2 硅柱直径刻蚀误差对SiPM PDE的影响
Table 2. Influences of silicon pillar diameter etching errors on SiPM PDE.
硅柱直径
偏差621 nm处
有效GFF/%900 nm处
吸收效率/%460—1100 nm波段
PDE 平均提升/%无误差
(原设计)63.10 51.37 50 ±5 nm 61.46 49.85 48.5 ±10 nm 59.29 48.27 46.8 -
[1] Zhao B, Huang Y, Wang C 2024 Nucl. Instrum. Methods Phys. Res. Sect. A 1059 168975
Google Scholar
[2] Rignanese L P, Antonioli P, Preghenella R, Scapparone E 2024 La Riv. Nuovo Cimento 47 299
Google Scholar
[3] Herbert D J, Saveliev V, Belcari N, Bisogni M G, Del Guerra A, Golovin A 2004 IEEE Nuclear Science Symposium Conference Record Rome, Italy, October 16–22, 2004 p4185
[4] Yan T Y, Wang X Y, Liu S T, Fan D W, Xu X Y, Zeng Q, Xie H, Yang X L, Zhu S P, Ma X P, Yuan Z, Chen X L 2022 Small Methods 6 2201105
Google Scholar
[5] Okino T, Yamada S, Sakata Y, Kasuga S, Takemoto M, Nose Y, Koshida H, Tamaru M, Sugiura Y, Saito S, Koyama S, Mori M, Hirose Y, Sawada M, Odagawa A, Tanaka T 2020 IEEE International Solid-State Circuits Conference (ISSCC) San Francisco, CA, USA, February 16–20, 2020 p9063045
[6] Baker-Finch S C, McIntosh K R, Yan D, Fong K C, Kho T C 2014 J. Appl. Phys. 116 063101
Google Scholar
[7] Haefeli G, Blanc F, Currás-Rivera E, Marchevski R, Ronchetti F, Schneider O, Shchutska L, Trippl C, Zaffaroni E, Zunica G 2024 arXiv: 2411.09358 [hep-ex]
[8] Álvarez-Garrote R, Calvo E, Canto A, Crespo-Anadón J I, Cuesta C, de la Torre Rojo A, Gil-Botella I, Manthey Corchado S, Martín I, Palomares C, Pérez-Molina L, Verdugo de Osa A 2024 Nucl. Instrum. Methods Phys. Res. Sect. A 1064 169347
Google Scholar
[9] Villa F, Bronzi D, Vergani M, Zou Y, Ruggeri A, Zappa F, Dalla Mora A 2014 European Solid-State Device Research Conference (ESSDERC) Grenoble, France, September 22–26, 2014 p294
[10] Wang Y, Chen Z D, Li C H, He R, Wang S Y, Li B C, Wang R H, Liang K, Yang R, Han D J 2015 Nucl. Instrum. Methods Phys. Res. , Sect. A 787 38
[11] 贾鼎, 葛勇, 袁寿其, 孙宏祥 2019 物理学报 68 224301
Google Scholar
Jia D, Ge Y, Yuan S Q, Sun H X 2019 Acta Phys. Sin. 68 224301
Google Scholar
[12] 鲁辉, 田慧平, 李长红, 纪越峰 2009 物理学报 58 2049
Google Scholar
Lu H, Tian H P, Li C H, Ji Y F 2009 Acta Phys. Sin. 58 2049
Google Scholar
[13] Wu L H, Hu X 2015 Phys. Rev. Lett. 114 223901
Google Scholar
[14] 崔昊杨, 李志锋, 马法君, 陈效双, 陆卫 2010 物理学报 59 7055
Google Scholar
Cui H Y, Li Z F, Ma F J, Chen X S, Lu W 2010 Acta Phys. Sin. 59 7055
Google Scholar
[15] Receveur K, Wei K, Hadjloum M, El Gibari M, De Rossi A, Li H W, Daryoush A S 2017 中国光学快报 15 12
Receveur K, Wei K, Hadjloum M, El Gibari M, De Rossi A, Li H W, Daryoush A S 2017 Chin. Opt. Lett. 15 12
[16] 赵聪, 马颖, 汪洋, 周雪, 李会增, 李明珠, 宋延林 2018 化学学报 76 9
Google Scholar
Zhao C, Ma Y, Wang Y, Li H Z, Li M Z, Song M Z 2018 Acta Chim. Sin. 76 9
Google Scholar
[17] Zou S W, Xin Y, Jin J L, Lin Z C, He Y Y, Liang J, Yan X J, Huang J M 2025 Adv. Mater. 37 2410130
[18] Wang Y, Yang Y F, Wu Y, Wang L, Liu L, Liu L N, Li L B, Han X X, Li Z B, Zhang G Q 2024 Proceedings of SPIE San Diego, CA, USA, August 12–16, 2024 p13283
[19] 郑煜, 郜飘飘, 唐昕, 李静, 刘洋, 张浩 2022 中南大学学报 29 3335
Google Scholar
Zheng Y, Gao P P, Tang X, Li J, Liu Y, Zhang H 2022 J. Cent. South Univ. 29 3335
Google Scholar
[20] 毛姗姗, 李艳秋, 姜家华, 沈诗欢, 刘克, 郑猛 2018 中国光学快报 16 030801
Google Scholar
Mao S S, Li Y Q, Jiang J H, Shen S H, Liu K, Zheng M 2018 Chin. Opt. Lett. 16 030801
Google Scholar
[21] Zhou W M, Min G Q, Zhang J, Liu Y B, Wang J H, Zhang Y P, Sun F 2011 Nano-Micro Lett. 3 135
Google Scholar
[22] Gyongy I, Davies A, Gallinet B, Dutton N A W, Duncan R R, Rickman C, Henderson R K, Dalgarno P A 2018 Opt. Express 26 2280
Google Scholar
[23] Intermite G, McCarthy A, Warburton R E, Ren X, Villa F, Lussana R, Waddie A J, Taghizadeh M R, Tosi A, Zappa F, Buller G S 2015 Opt. Express 23 33777
Google Scholar
[24] Berini P 2013 Laser Photonics Rev. 8 197
Metrics
- Abstract views: 358
- PDF Downloads: 17
- Cited By: 0









DownLoad: