Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optimization of detection efficiency in silicon photomultipliers via topological photonic crystals

GUO Chaoqian ZHANG Guoqing ZHANG Haotong WU Yun WANG Jun YANG Yanfei LIU Lu LIU Lina LI Lianbi HAN Xiaoxiang LI Zebin HAN Chao

Citation:

Optimization of detection efficiency in silicon photomultipliers via topological photonic crystals

GUO Chaoqian, ZHANG Guoqing, ZHANG Haotong, WU Yun, WANG Jun, YANG Yanfei, LIU Lu, LIU Lina, LI Lianbi, HAN Xiaoxiang, LI Zebin, HAN Chao
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Silicon photomultipliers (SiPMs) have been widely used in the field of weak light detection. However, SiPMs utilizing small-sized Geiger-mode avalanche photodiode (G-APD) cells face the limitations due to a restricted effective geometric fill sactor (GFF), which leads to relatively low photon detection efficiency (PDE), and additionally, constrained by the intrinsic properties of silicon materials, their PDE in the near-infrared band is also relatively insufficient. To address the above issues, this work proposes a regional optical field modulation approach based on topological photonic crystals (TPCs), aiming to improve the PDE of SiPMs without modifying their internal structure. Through COMSOL electromagnetic wave frequency-domain simulation, the multi-band synergistic mechanism of dead-zone topological edge state guidance, photosensitive region slow-light effect, and Bragg scattering is revealed. In the 460–700 nm band, the honeycomb lattice in the dead zone induces topological edge states via Floquet periodic analysis, while the periodic dielectric distribution of the lattice excites Bragg scattering to reduce photon reflection loss at the metal surface and precisely couples photons to the photosensitive region, leading to an increase in effective GFF from 46.4% to 63.1% at 621 nm. In the 700–1100 nm band, the periodic dielectric distribution of the honeycomb lattice further excites Bragg resonance to reduce metal surface reflection loss, and simultaneously, the multiple scattering mechanism substantially extends the propagation path of photons in the dead zone to improve the coupling probability with the photosensitive region. The designed periodic silicon pillar structure in the photosensitive region effectively extends the lateral propagation path of photons through the slow-light effect, while Bragg scattering reduces reflection loss, resulting in a significant increase in absorption efficiency from 41.19% to 51.37% at 900 nm. Simulation results show that this design scheme increases the average PDE of SiPMs by 50% in the 460–1100 nm band (with a peak value of 81%) and can be implemented via mainstream etching processes (electron beam lithography + reactive ion etching). Compared with traditional microlens and plasmonic structures, TPCs exhibit significant advantages in broad-spectrum response and process simplification. This work provides a new topological photonics approach for photon recycling and PDE enhancement of SiPMs.
  • 图 1  SiPM表面构建拓扑光子晶体原理示意图 (a) SiPM三维结构示意图; (b) 近距离俯视图; (c) 拓扑绝缘光子晶体示意图(近距离); (d) 表面具有拓扑光子晶体的SiPM二维剖面示意图; (e) TPC二维晶格示意图; (f) Floquet周期性分析示意图; (g) 光子在TPC中传播示意图

    Figure 1.  Schematic diagrams of the principle of constructing topological photonic crystals on the surface of SiPM: (a) Schematic diagram of the three-dimensional structure of SiPM; (b) close-up top view; (c) schematic diagram of topological insulating photonic crystal (close-up); (d) two-dimensional cross-sectional schematic diagram of SiPM with topological photonic crystals on the surface; (e) schematic diagram of TPC two-dimensional lattice; (f) schematic diagram of Floquet periodicity analysis; (g) schematic diagram of photon propagation in TPC.

    图 2  拓扑绝缘光子晶体单个晶格结构的能带图 (a) R = a0/3; (b) R = a0/2.9; (c) R = a0/3.1; (d) 边界态; (e) 布拉格散射体态; (f) 纯体态电场模分布(单位: V)

    Figure 2.  Energy band diagrams of a single lattice structure of topological insulating photonic crystals: (a) R = a0/3; (b) R = a0/2.9; (c) R = a0/3.1; (d) boundary state; (e) Bragg scattering bulk state; (f) electric field mode distribution of pure bulk state (unit: V).

    图 3  三维仿真结构图 (a) 几何建模; (b) 光子晶体电场模分布(单位: V)

    Figure 3.  Three-dimensional simulation structure diagrams: (a) Geometric modeling; (b) electric field mode distribution of photonic crystals (unit: V).

    图 4  不同波长下死区构建TPC的电场模分布图(单位: V) (a) 450 nm; (b) 550 nm; (c) 621 nm; (d) 650 nm; (e) 700 nm; (f) 800 nm; (g) 900 nm; (h) 1100 nm; (i) 621 nm波长下的边界态传播

    Figure 4.  Electric field mode distribution diagrams of TPC constructed in the dead zone (unit: V) at different wavelengths: (a) 450 nm; (b) 550 nm; (c) 621 nm; (d) 650 nm; (e) 700 nm; (f) 800 nm; (g) 900 nm; (h) 1100 nm; (i) boundary state propagation at 621 nm wavelength.

    图 5  不同波长下光敏区构建TPC的电场模分布图(单位: V) (a) 460 nm; (b) 550 nm; (c) 650 nm; (d) 700 nm; (e) 900 nm; (f) 1100 nm

    Figure 5.  Electric field mode distribution diagrams of TPC constructed in the photosensitive region (unit: V) at different wavelengths: (a) 460 nm; (b) 550 nm; (c) 650 nm; (d) 700 nm; (e) 900 nm; (f) 1100 nm.

    图 6  增强系数随波长变化的曲线

    Figure 6.  Curve of enhancement factor varying with wavelength.

    图 7  表面有无拓扑光子晶体结构的SiPM的PDE曲线对比

    Figure 7.  Comparison of PDE curves of SiPM with and without surface topological photonic crystal structure.

    图 8  表面集成TPC的SiPM制作工艺流程图

    Figure 8.  Flow chart of the manufacturing process of SiPM with surface-integrated TPC.

    表 1  提升SiPM PDE的方法对比

    Table 1.  Comparison of methods for improving the PDE of SiPM.

    文献 优化方法 波段响应范围/nm PDE 提升幅度 工艺复杂度 提升峰值
    [7] 球面微透镜阵列 400—900 24% 24% (400—900 nm)
    [22] 柱面微透镜阵列 450—650 约50% 50% (450—650 nm)
    [23] 衍射微透镜阵列 500—900
    [24] 等离激元 600—850 660—690 nm达到150%, 其余波段不到30% 极高 170% (675 nm)
    本工作 拓扑光子晶体 460—1100 50%(平均) 81% (1100 nm)
    DownLoad: CSV

    表 2  硅柱直径刻蚀误差对SiPM PDE的影响

    Table 2.  Influences of silicon pillar diameter etching errors on SiPM PDE.

    硅柱直径
    偏差
    621 nm处
    有效GFF/%
    900 nm处
    吸收效率/%
    460—1100 nm波段
    PDE 平均提升/%
    无误差
    (原设计)
    63.1051.3750
    ±5 nm61.4649.8548.5
    ±10 nm59.2948.2746.8
    DownLoad: CSV
  • [1]

    Zhao B, Huang Y, Wang C 2024 Nucl. Instrum. Methods Phys. Res. Sect. A 1059 168975Google Scholar

    [2]

    Rignanese L P, Antonioli P, Preghenella R, Scapparone E 2024 La Riv. Nuovo Cimento 47 299Google Scholar

    [3]

    Herbert D J, Saveliev V, Belcari N, Bisogni M G, Del Guerra A, Golovin A 2004 IEEE Nuclear Science Symposium Conference Record Rome, Italy, October 16–22, 2004 p4185

    [4]

    Yan T Y, Wang X Y, Liu S T, Fan D W, Xu X Y, Zeng Q, Xie H, Yang X L, Zhu S P, Ma X P, Yuan Z, Chen X L 2022 Small Methods 6 2201105Google Scholar

    [5]

    Okino T, Yamada S, Sakata Y, Kasuga S, Takemoto M, Nose Y, Koshida H, Tamaru M, Sugiura Y, Saito S, Koyama S, Mori M, Hirose Y, Sawada M, Odagawa A, Tanaka T 2020 IEEE International Solid-State Circuits Conference (ISSCC) San Francisco, CA, USA, February 16–20, 2020 p9063045

    [6]

    Baker-Finch S C, McIntosh K R, Yan D, Fong K C, Kho T C 2014 J. Appl. Phys. 116 063101Google Scholar

    [7]

    Haefeli G, Blanc F, Currás-Rivera E, Marchevski R, Ronchetti F, Schneider O, Shchutska L, Trippl C, Zaffaroni E, Zunica G 2024 arXiv: 2411.09358 [hep-ex]

    [8]

    Álvarez-Garrote R, Calvo E, Canto A, Crespo-Anadón J I, Cuesta C, de la Torre Rojo A, Gil-Botella I, Manthey Corchado S, Martín I, Palomares C, Pérez-Molina L, Verdugo de Osa A 2024 Nucl. Instrum. Methods Phys. Res. Sect. A 1064 169347Google Scholar

    [9]

    Villa F, Bronzi D, Vergani M, Zou Y, Ruggeri A, Zappa F, Dalla Mora A 2014 European Solid-State Device Research Conference (ESSDERC) Grenoble, France, September 22–26, 2014 p294

    [10]

    Wang Y, Chen Z D, Li C H, He R, Wang S Y, Li B C, Wang R H, Liang K, Yang R, Han D J 2015 Nucl. Instrum. Methods Phys. Res. , Sect. A 787 38

    [11]

    贾鼎, 葛勇, 袁寿其, 孙宏祥 2019 物理学报 68 224301Google Scholar

    Jia D, Ge Y, Yuan S Q, Sun H X 2019 Acta Phys. Sin. 68 224301Google Scholar

    [12]

    鲁辉, 田慧平, 李长红, 纪越峰 2009 物理学报 58 2049Google Scholar

    Lu H, Tian H P, Li C H, Ji Y F 2009 Acta Phys. Sin. 58 2049Google Scholar

    [13]

    Wu L H, Hu X 2015 Phys. Rev. Lett. 114 223901Google Scholar

    [14]

    崔昊杨, 李志锋, 马法君, 陈效双, 陆卫 2010 物理学报 59 7055Google Scholar

    Cui H Y, Li Z F, Ma F J, Chen X S, Lu W 2010 Acta Phys. Sin. 59 7055Google Scholar

    [15]

    Receveur K, Wei K, Hadjloum M, El Gibari M, De Rossi A, Li H W, Daryoush A S 2017 中国光学快报 15 12

    Receveur K, Wei K, Hadjloum M, El Gibari M, De Rossi A, Li H W, Daryoush A S 2017 Chin. Opt. Lett. 15 12

    [16]

    赵聪, 马颖, 汪洋, 周雪, 李会增, 李明珠, 宋延林 2018 化学学报 76 9Google Scholar

    Zhao C, Ma Y, Wang Y, Li H Z, Li M Z, Song M Z 2018 Acta Chim. Sin. 76 9Google Scholar

    [17]

    Zou S W, Xin Y, Jin J L, Lin Z C, He Y Y, Liang J, Yan X J, Huang J M 2025 Adv. Mater. 37 2410130

    [18]

    Wang Y, Yang Y F, Wu Y, Wang L, Liu L, Liu L N, Li L B, Han X X, Li Z B, Zhang G Q 2024 Proceedings of SPIE San Diego, CA, USA, August 12–16, 2024 p13283

    [19]

    郑煜, 郜飘飘, 唐昕, 李静, 刘洋, 张浩 2022 中南大学学报 29 3335Google Scholar

    Zheng Y, Gao P P, Tang X, Li J, Liu Y, Zhang H 2022 J. Cent. South Univ. 29 3335Google Scholar

    [20]

    毛姗姗, 李艳秋, 姜家华, 沈诗欢, 刘克, 郑猛 2018 中国光学快报 16 030801Google Scholar

    Mao S S, Li Y Q, Jiang J H, Shen S H, Liu K, Zheng M 2018 Chin. Opt. Lett. 16 030801Google Scholar

    [21]

    Zhou W M, Min G Q, Zhang J, Liu Y B, Wang J H, Zhang Y P, Sun F 2011 Nano-Micro Lett. 3 135Google Scholar

    [22]

    Gyongy I, Davies A, Gallinet B, Dutton N A W, Duncan R R, Rickman C, Henderson R K, Dalgarno P A 2018 Opt. Express 26 2280Google Scholar

    [23]

    Intermite G, McCarthy A, Warburton R E, Ren X, Villa F, Lussana R, Waddie A J, Taghizadeh M R, Tosi A, Zappa F, Buller G S 2015 Opt. Express 23 33777Google Scholar

    [24]

    Berini P 2013 Laser Photonics Rev. 8 197

  • [1] ZHANG Wenjie, ZHANG Xiaojiao, HU Shunan, ZHAN Jie, GAO Enduo, WANG Qi, NIE Guozheng. Dynamically tunable multi-frequency modulator via triple plasmon-induced transparency in graphene metasurfaces. Acta Physica Sinica, doi: 10.7498/aps.74.20250488
    [2] HU Shunan, LI Deqiong, ZHAN Jie, GAO Enduo, WANG Qi, LIU Nanliu, NIE Guozheng. Synergy-based plasmon-induced transparency and optical switch and slow light applications. Acta Physica Sinica, doi: 10.7498/aps.74.20250078
    [3] Chen Hong-Xiang, Liu Mo-Dian, Fan Zhi-Bin, Chen Xiao-Dong. Topological light transport in low-symmetry valley photonic crystals. Acta Physica Sinica, doi: 10.7498/aps.73.20240040
    [4] Xie Bao-Hao, Chen Hua-Jun, Sun Yi. Slow light effect caused by optomechanically induced transparency in multimode optomechanical system. Acta Physica Sinica, doi: 10.7498/aps.72.20230663
    [5] Mou Jia-Lian, Lü Jun-Guang, Sun Xi-Lei, Lan Xiao-Fei, Huang Yong-Sheng. Time of flight detector for charged particle identification based on circular electron-positron collider. Acta Physica Sinica, doi: 10.7498/aps.72.20222271
    [6] Liu Lang, Wang Yi-Ping. Simulation and detection of the topological properties of phonon-photon in frequency-tunable optomechanical lattice. Acta Physica Sinica, doi: 10.7498/aps.71.20221286
    [7] Xiang Yu-Yan, Li Song, Ma Yue. Effect of pile-up of electron flow pulse from photomultiplier tube on ranging by photon counting. Acta Physica Sinica, doi: 10.7498/aps.71.20220537
    [8] Fang Yun-Tuan, Wang Zhang-Xin, Fan Er-Pan, Li Xiao-Xue, Wang Hong-Jin. Topological phase transition based on structure reversal of two-dimensional photonic crystals and construction of topological edge states. Acta Physica Sinica, doi: 10.7498/aps.69.20200415
    [9] Shen Qing-Wei, Xu Lin, Jiang Jian-Hua. Topological phase transitions in core-shell gyromagnetic photonic crystal. Acta Physica Sinica, doi: 10.7498/aps.66.224102
    [10] Guo Le-Hui, Tian Jin-Shou, Lu Yu, Li Hong-Wei. Optimization of the 3-inch photomultiplier tube for the neutrino detection. Acta Physica Sinica, doi: 10.7498/aps.65.228501
    [11] Zhou Nian-Jie, Huang Wei-Qi, Miao Xin-Jian, Wang Gang, Dong Tai-Ge, Huang Zhong-Mei, Yin Jun. Effects of quantum confinement and symmetry on the silicon photonic crystal band gap. Acta Physica Sinica, doi: 10.7498/aps.64.064208
    [12] Shen Yun, Fu Ji-Wu, Yu Guo-Ping. Influence of gain on propagation properties of slow light in one-dimensional periodic structures. Acta Physica Sinica, doi: 10.7498/aps.63.174202
    [13] Chen Xin-Lian, Kong Fan-Min, Li Kang, Gao Hui, Yue Qing-Yang. Improvement of light extraction efficiency of GaN-based blue light-emitting diode by disorder photonic crystal. Acta Physica Sinica, doi: 10.7498/aps.62.017805
    [14] Yue Qing-Yang, Kong Fan-Min, Li Kang, Zhao Jia. Study on the light extraction efficiency of GaN-based light emitting diode by using the defects of the photonic crystals. Acta Physica Sinica, doi: 10.7498/aps.61.208502
    [15] Chen Jian, Li Xiao-Li, Li Hai-Hua, Wang Qing-Kang. Research of LED light extraction efficiency of photonic crystal with square and hexagonal lattice. Acta Physica Sinica, doi: 10.7498/aps.58.6216
    [16] Lu Hui, Tian Hui-Ping, Li Chang-Hong, Ji Yue-Feng. Research on new type of slow light structure based on 2D photonic crystal coupled cavity waveguide. Acta Physica Sinica, doi: 10.7498/aps.58.2049
    [17] Du Xiao-Yu, Zheng Wan-Hua, Zhang Ye-Jin, Ren Gang, Wang Ke, Xing Ming-Xin, Chen Liang-Hui. High transmission of slow light in the photonic crystal waveguide bends. Acta Physica Sinica, doi: 10.7498/aps.57.7005
    [18] Du Xiao-Yu, Zheng Wan-Hua, Ren Gang, Wang Ke, Xing Ming-Xin, Chen Liang-Hui. Slow wave effect of 2-D photonic crystal coupled cavity array. Acta Physica Sinica, doi: 10.7498/aps.57.571
    [19] Chang Jun-Tao, Wu Ling-An. Absolute self-calibration of the quantum efficiency of single-photon detectors. Acta Physica Sinica, doi: 10.7498/aps.52.1132
    [20] WANG SHOU-MIN. THE INVESTIGATION OF THE TIME RESOLUTION CHARACTERISTICS OF A PHOTOMULTIPLIER. Acta Physica Sinica, doi: 10.7498/aps.18.600
Metrics
  • Abstract views:  358
  • PDF Downloads:  17
  • Cited By: 0
Publishing process
  • Received Date:  08 July 2025
  • Accepted Date:  01 September 2025
  • Available Online:  24 September 2025
  • /

    返回文章
    返回