-
Silicon Photomultipliers (SiPMs) have been widely used in the field of weak light detection; however, SiPMs based on small-sized Geiger-mode Avalanche Photodiode (G-APD) cells suffer from the limitation of restricted effective Geometric Fill Factor (GFF), resulting in relatively low Photon Detection Efficiency (PDE), and additionally, constrained by the intrinsic properties of silicon materials, their PDE in the near-infrared band is also relatively insufficient. To address the above issues, this paper proposes a regional optical field modulation scheme based on Topological Photonic Crystals (TPCs), aiming to improve the PDE of SiPMs without altering their internal structure. Through COMSOL electromagnetic wave frequency-domain simulation, the multi-band synergistic mechanism of dead-zone topological edge state guidance, photosensitive region slow-light effect, and Bragg scattering is revealed: in the 460–700 nm band, the honeycomb lattice in the dead zone induces topological edge states via Floquet periodic analysis, while the periodic dielectric distribution of the lattice excites Bragg scattering to reduce photon reflection loss on the metal surface and accurately couple photons to the photosensitive region, leading to an increase in effective GFF from 46.4% to 63.1% at 621 nm; in the 700–1100 nm band, the periodic dielectric distribution of the honeycomb lattice further excites Bragg resonance to reduce metal surface reflection loss, and simultaneously, the multiple scattering mechanism significantly extends the propagation path of photons in the dead zone to improve the coupling probability with the photosensitive region; the designed periodic silicon pillar structure in the photosensitive region effectively extends the lateral propagation path of photons through the slow-light effect, while Bragg scattering reduces reflection loss, resulting in a significant increase in absorption efficiency from 41.19% to 51.37% at 900 nm. Simulation results show that this design scheme increases the average PDE of SiPMs by 50% in the 460–1100 nm band (with a peak value of 81%) and can be implemented via mainstream etching processes (electron beam lithography + reactive ion etching); compared with traditional microlens and plasmonic structures, TPCs exhibit significant advantages in broad-spectrum response and process simplification, and this study provides a new topological photonics approach for photon recycling and PDE enhancement of SiPMs.
-
Keywords:
- SiPM /
- photon detection efficiency (PDE) /
- topological photonic crystal(TPC) /
- slow-light effect
-
[1] Zhao B, Huang Y, Wang C 2024 Nucl. Instrum. Methods Phys. Res., Sect. A 1059 168975
[2] Rignanese L P, Antonioli P, Preghenella R, Scapparone E 2024 La Riv. Nuovo Cimento 47 299
[3] Herbert D J, Saveliev V, Belcari N, Bisogni M G, Del Guerra A, Golovin A 2004 IEEE Nuclear Science Symposium Conference Record Rome, Italy, October 16–22, 2004 p4185
[4] Yan T Y, Wang X Y, Liu S T, Fan D W, Xu X Y, Zeng Q, Xie H, Yang X L, Zhu S P, Ma X P, Yuan Z, Chen X L 2022 Small Methods 6 2201105
[5] Okino T, Yamada S, Sakata Y, Kasuga S, Takemoto M, Nose Y, Koshida H, Tamaru M, Sugiura Y, Saito S, Koyama S, Mori M, Hirose Y, Sawada M, Odagawa A, Tanaka T 2020 IEEE International Solid-State Circuits Conference (ISSCC) San Francisco, CA, USA, February 16–20, 2020 p9063045
[6] Baker-Finch S C, McIntosh K R, Yan D, Fong K C, Kho T C 2014 J. Appl. Phys. 116 063101
[7] Haefeli G, Blanc F, Currás-Rivera E, Marchevski R, Ronchetti F, Schneider O, Shchutska L, Trippl C, Zaffaroni E, Zunica G 2024 arXiv:2411.09358 [hep-ex]
[8] Álvarez-Garrote R, Calvo E, Canto A, Crespo-Anadón J I, Cuesta C, de la Torre Rojo A, Gil-Botella I, Manthey Corchado S, Martín I, Palomares C, Pérez-Molina L, Verdugo de Osa A 2024 Nucl. Instrum. Methods Phys. Res., Sect. A 1064 169347
[9] Villa F, Bronzi D, Vergani M, Zou Y, Ruggeri A, Zappa F, Dalla Mora A 2014 European Solid-State Device Research Conference (ESSDERC) Grenoble, France, September 22–26, 2014 p294
[10] Yue W, Zongde C, Chenhui L, Ran H, Shenyuan W, Baicheng L, Ruiheng W, Kun L, Ru Y, Dejun H 2015 Nucl. Instrum. Methods Phys. Res., Sect. A 787 38
[11] Jia D, Ge Y, Yuan S Q, Sun H X 2019 Acta Phys. Sin. 68 224301 (in Chinese) [贾鼎,葛勇,袁寿其,孙宏祥 2019 物理学报 68 224301]
[12] Lu H, Tian H P, Li C H, Ji Y F 2009 Acta Phys. Sin. 58 2049 (in Chinese) [鲁辉,田慧平,李长红,纪越峰 2009 物理学报 58 2049]
[13] Wu L H, Hu X 2015 Phys. Rev. Lett. 114 223901
[14] Li Z F, Ma F J, Chen X S, Lu W, Cui H Y 2010 Acta Phys. Sin. 59 7055 (in Chinese) [崔昊杨,李志锋,马法君,陈效双,陆卫 2010 物理学报 59 7055]
[15] Receveur K, Wei K, Hadjloum M, El Gibari M, De Rossi A, Li H W, Daryoush A S 2017 Chin. Opt. Lett. 15 12 (in Chinese) [Receveur K, Wei K, Hadjloum M, El Gibari M, De Rossi A, Li H W, Daryoush A S 2017 中国光学快报 15 12]
[16] Zhao C, Ma Y, Wang Y, Li H Z, Li M Z, Song M Z 2018 Acta Chim. Sin. 76 9 (in Chinese) [赵聪,马颖,汪洋,周雪,李会增,李明珠,宋延林 2018 化学学报 76 9]
[17] Zou S, Xin Y, Jin J, Lin Z, He Y, Liang J, Yan X, Huang J 2025 Adv. Mater. 37 2410130
[18] Wang Y, Yang Y F, Wu Y, Wang L, Liu L, Liu L N, Li L B, Han X X, Li Z B, Zhang G Q 2024 Proceedings of SPIE San Diego, CA, USA, August 12–16, 2024 p13283
[19] Zheng Y, Gao P P, Tang X, Li J, Liu Y, Zhang H 2022 J. Cent. South Univ. 29 3335 (in Chinese) [郑煜,郜飘飘,唐昕,李静,刘洋,张浩 2022 中南大学学报 29 3335]
[20] Mao S S, Li Y Q, Jiang J H, Shen S H, Liu K, Zheng M 2018 Chin. Opt. Lett. 16 20 (in Chinese) [毛姗姗,李艳秋,姜家华,沈诗欢,刘克,郑猛 2018 中国光学快报 16 20]
[21] Zhou W, Min G, Zhang J, Liu Y, Wang J, Zhang Y, Sun F 2011 Nano-Micro Lett. 3 135
[22] Gyongy I, Davies A, Gallinet B, Dutton N A W, Duncan R R, Rickman C, Henderson R K, Dalgarno P A 2018 Opt. Express 26 2280
[23] Intermite G, McCarthy A, Warburton R E, Ren X, Villa F, Lussana R, Waddie A J, Taghizadeh M R, Tosi A, Zappa F, Buller G S 2015 Opt. Express 23 33777
[24] Berini P 2013 Laser Photonics Rev. 8 197
Metrics
- Abstract views: 86
- PDF Downloads: 4
- Cited By: 0