-
We report the near-field nanofocusing through two types of plasmonic nanostructures consisting of annular grooves and annular slit, respectively. The radius of one half of each circle is designed to be bigger than the other half by half wavelength of the surface plasmon polaritons. By illuminating the structures with linearly polarized light, one single tight focal spot was detected by the scanning near-field optical microscope. Compared with the method of using radially polarized light, this method does not need to keep the center of the illuminating light right on the center of the structure, hence is much easier to use. Furthermore, theoretical simulations based on the finite-difference time-domain method testified the experimental results.
-
Keywords:
- near-field optical microscopy /
- surface plasmon polaritons /
- nanofocusing /
- linearly polarized light
[1] Kim S, Jin J, Kim Y J, Park I Y, Kim Y, Kim S W 2008 Nature 453 757
[2] Barnes W L, Dereux A, Ebbersen T W 2003 Nature 424 824
[3] Ozbay E 2006 Science 311 189
[4] Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J, Ebbesen T W 2006 Nature 440 508
[5] Fang Z Y, Lin C F, Ma R M, Huang S, Zhu X 2010 ACS Nano. 4 75
[6] Rothenhusler B, Knoll W 1988 Nature 332 615
[7] Xie S X 2010 Chin. Phys. B 14 9
[8] Fang Z Y, Lin F, Huang S, Song W T, Zhu X 2009 Appl. Phys. Lett. 94 063306
[9] Liu Z W, Steele J M, Srituravanich W, Pikus Y, Sun C, Zhang X 2005 Nano. Lett. 5 1726
[10] Lerman G M, Yanai A, Levy U 2009 Nano. Lett. 9 2139
[11] Chen W B, Abeysinghe D C, Nelson R L, Zhan Q W 2009 Nano. Lett. 10 4320
[12] Zayats A V, Smolyaninov I I, Maradudin A A 2005 Phys. Rep. 408 131
[13] Peyrade D, Silberstein E, Lalanne P, Talneau A, Chen Y 2002 Appl. Phys. Lett. 81 829
[14] Krenn J R, Ditlbacher H, Schider G, Hohenau A, Leitner A, Aussenegg F R 2003 J. Microscop 209 167
[15] Weeber J C, Lacroute Y, Dereux A, Devaux E, Ebbesen T, Girard C, Gonzlez M U, Baudrion A L 2004 Phys. Rev. B 70 235406
[16] Gonzalez M U, Weeber J C, Baudrion A L, Dereux A, Stepanov A L, Krenn J R, Devaux E, Ebbesen T W 2006 Phys. Rev. B 73 155416
[17] Bouhelier A, Ignatovich F, Bruyant A, Huang C, Colas D, Francs G, Weeber J C, Dereux A, Wiederrecht G P, Novotny L 2007 Opt. Lett. 32 2535
[18] Novotny L, Hecht B 2006 Principles of Nano-optics (Cambridge: Cambridge Univ. Press)
-
[1] Kim S, Jin J, Kim Y J, Park I Y, Kim Y, Kim S W 2008 Nature 453 757
[2] Barnes W L, Dereux A, Ebbersen T W 2003 Nature 424 824
[3] Ozbay E 2006 Science 311 189
[4] Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J, Ebbesen T W 2006 Nature 440 508
[5] Fang Z Y, Lin C F, Ma R M, Huang S, Zhu X 2010 ACS Nano. 4 75
[6] Rothenhusler B, Knoll W 1988 Nature 332 615
[7] Xie S X 2010 Chin. Phys. B 14 9
[8] Fang Z Y, Lin F, Huang S, Song W T, Zhu X 2009 Appl. Phys. Lett. 94 063306
[9] Liu Z W, Steele J M, Srituravanich W, Pikus Y, Sun C, Zhang X 2005 Nano. Lett. 5 1726
[10] Lerman G M, Yanai A, Levy U 2009 Nano. Lett. 9 2139
[11] Chen W B, Abeysinghe D C, Nelson R L, Zhan Q W 2009 Nano. Lett. 10 4320
[12] Zayats A V, Smolyaninov I I, Maradudin A A 2005 Phys. Rep. 408 131
[13] Peyrade D, Silberstein E, Lalanne P, Talneau A, Chen Y 2002 Appl. Phys. Lett. 81 829
[14] Krenn J R, Ditlbacher H, Schider G, Hohenau A, Leitner A, Aussenegg F R 2003 J. Microscop 209 167
[15] Weeber J C, Lacroute Y, Dereux A, Devaux E, Ebbesen T, Girard C, Gonzlez M U, Baudrion A L 2004 Phys. Rev. B 70 235406
[16] Gonzalez M U, Weeber J C, Baudrion A L, Dereux A, Stepanov A L, Krenn J R, Devaux E, Ebbesen T W 2006 Phys. Rev. B 73 155416
[17] Bouhelier A, Ignatovich F, Bruyant A, Huang C, Colas D, Francs G, Weeber J C, Dereux A, Wiederrecht G P, Novotny L 2007 Opt. Lett. 32 2535
[18] Novotny L, Hecht B 2006 Principles of Nano-optics (Cambridge: Cambridge Univ. Press)
Catalog
Metrics
- Abstract views: 9840
- PDF Downloads: 1180
- Cited By: 0