Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Strong coupling between J-aggregates and surface plasmon polaritons in gold nanodisks arrays

Zhao Ze-Yu Liu Jin-Qiao Li Ai-Wu Xu Ying

Citation:

Strong coupling between J-aggregates and surface plasmon polaritons in gold nanodisks arrays

Zhao Ze-Yu, Liu Jin-Qiao, Li Ai-Wu, Xu Ying
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Recently, much attention has been paid to an interesting subject, i.e., the interactions between surface plasmon polaritons (SPPs) and molecules. The interactions between SPPs and molecules often appear in two opposite cases, namely weak and strong coupling. When the interaction is weak, the absorption maximum simply coincides with the electronic transition energy of the molecule. In the weak coupling regime, the wave functions of the molecule and the SPP modes are considered to be unperturbed, only leading to enhancement of the absorption or fluorescence of the molecules. On the other hand, when the interaction is strong enough, the SPPs and molecules can form a coherent hybrid object, thus the excitation energy is shared by and oscillates between the SPPs and molecular systems (Rabi oscillations), leading to vacuum Rabi splitting of energy levels at the resonance frequency. Due to the fact that both the SPPs and the molecule components can be confined into the nanometer scale, the work on strong coupling with SPPs offers a very good opportunity to realize nanoplasmonic devices, such as thresholdless laser and room temperature B-E condensates.In this work, we investigate a hybrid system formed by strong coupled gold nanodisk arrays and J-aggregate molecules. Smooth gold nanodisk arrays are fabricated by a template-stripping process. In such an experimentally simple replicate process, mass-production of gold nanodisk arrays with the same morphology can be transferred from patterned indium tin oxides (ITO) glass. The structures on ITO glass are milled with a focused ion beam. Periodic gold nanodisk arrays have the capability of converting light into SPPs modes, resulting in a significant field confinement at the patterned metal surface. In particular, the desired SPP mode can be chosen by changing the nanodisk array period to match the absorbance peak of the J-aggregate molecule. On the other hand, J-aggregate molecule is chosen due to its large dipole moments and absorption coefficient, which makes it attractive for designing the strong exciton-plasmon interaction system. The strong coupled system is formed when the J-aggregate molecule is spin-coated on the gold nanodisk arrays. Through reflection measurements, Rabi splitting energy value 200 meV is observed when the period of the nanodisk array is 350 nm. Through tuning the coupling strength by changing the lattice period from 250 nm to 450 nm, the typical signature of strong coupling:anticrossing of energies is found in reflection spectra. This simple replicate process for strong coupling hybrid system fabrication should play an important role in designing novel ultrafast nanoplasmonic devices with coherent functionalities.
      Corresponding author: Xu Ying, xuying1969@hotmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 31378053).
    [1]

    Sheng Y, Fan D H, Fu J W, Yu C P 2011 Acta Phys. Sin. 60 117302 (in Chinese)[沈云, 范定寰, 傅继武, 于国萍2011物理学报60 117302]

    [2]

    Huang Q, Cao L R, Sun J, Zhang X D, Geng W D, Xiong S Z, Zhao Y, Wang J 2009 Acta Phys. Sin. 58 1980 (in Chinese)[黄茜, 曹丽冉, 孙建, 张晓丹, 耿卫东, 熊绍珍, 赵颖, 王京2009物理学报58 1980]

    [3]

    Gramotnev D K, Bozhevolnyi S I 2010 Nat. Photonics 4 83

    [4]

    Xu B B, Zhang R, Liu X Q, Wang H, Zhang Y L, Jiang H B, Wang L, Ma Z C, Ku J F, Xiao F S, Sun H B 2012 Chem. Commun. 48 1680

    [5]

    Xu B B, Ma Z C, Wang L, Zhang R, Niu L G, Yang Z, Zhang Y L, Zheng W H, Zhao B, Xu Y, Chen Q D, Xia H, Sun H B 2011 Lab on Chip 11 3347

    [6]

    Wang H, Wang H Y, Gao B R, Jiang Y, Yang Z Y, Hao Y W, Chen Q D, Du X B, Sun H B 2011 Appl. Phys. Lett. 98 251501

    [7]

    Jiang Y, Wang H Y, Wang H, Gao B R, Hao Y W, Jin Y, Chen Q D, Sun H B 2011 J. Phys. Chem. C 115 12636

    [8]

    Neogi A, Lee C W, Everitt H O, Kuroda T, Tackeuchi A, Yablonovitch E 2002 Phys. Rev. B 66 153305

    [9]

    Törmö P, Barnes W L 2015 Rep. Prog. Phys. 78 013901

    [10]

    Khitrova G, Gibbs H M, Kira M, Koch S W, Scherer A 2006 Nat. Phys. 2 81

    [11]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [12]

    Schlather A E, Large N, Urban A S, Nordlander P, Halas N J 2013 Nano Lett. 13 3281

    [13]

    Zengin G, Wersäll M, Nilsson S, Antosiewicz T J, Käll M, Shegai T 2015 Phys. Rev. Lett. 114 157401

    [14]

    Ding K, Ning C Z 2012 Light Sci. Appl. 1 e20

    [15]

    Fang Y, Sun M 2015 Light Sci. Appl. 4 e294

    [16]

    Lai Y Y, Lan Y P, Lu T C 2013 Light Sci. Appl. 2 e76

    [17]

    DeLacy B G, Miller O D, Hsu C W, Zander Z, Lacey S, Yagloski R, Fountain A W, Valdes E, Anquillare E, Soljačić M, Johnson S G, Joannopoulos J D 2015 Nano Lett. 15 2588

    [18]

    Hao Y W, Wang H Y, Jiang Y, Chen Q D, Ueno K, Wang W Q, Misawa H, Sun H B 2011 Angew. Chem. 123 7970

    [19]

    Wang H, Wang H Y, Bozzola A, Toma A, Panaro S, Raja W, Alabastri A, Wang L, Chen Q D, Xu H L, De Angelis F, Sun H B, Zaccaria R P 2016 Adv. Funct. Mater. DOI:10.1002/adfm. 201601452

    [20]

    Wang H, Toma A, Wang H Y, Bozzola A, Miele E, Haddadpour A, Veronis G, De Angelis F, Wang L, Chen Q D, Xu H L, Sun H B, Zaccaria R P 2016 Nanoscale 8 13445

    [21]

    Väkeväinen A I, Moerland R J, Rekola H T, Eskelinen A P, Martikainen J P, Kim D H, Törmö P 2014 Nano Lett. 14 1721

    [22]

    Shi L, Hakala T K, Rekola H T, Martikainen J P, Moerland R J, Törmö P 2014 Phys. Rev. Lett. 112 153002

    [23]

    Gómez D E, Lo S S, Davis T J, Hartland G V 2013 J. Phys. Chem. B 117 4340

    [24]

    Gómez D E, Vernon K C, Mulvaney P, Davis T J 2010 Nano Lett. 10 274

    [25]

    Kéna-Cohen S, Maier S A, Bradley D D C 2013 Adv. Opt. Mater. 1 827

    [26]

    Schwartz T, Hutchison J A, Genet C, Ebbesen T W 2011 Phys. Rev. Lett. 106 196405

    [27]

    Hutchison J A, Schwartz T, Genet C, Devaux E, Ebbesen T W 2012 Angew. Chem. Int. Ed. 51 1592

    [28]

    Hutchison J A, Liscio A, Schwartz T, Canaguier-Durand A, Genet C, Palermo V, Samorì P, Ebbesen T W 2013 Adv. Mater. 25 2481

    [29]

    Orgiu E, George J, Hutchison J A, Devaux E, Dayen J F, Doudin B, Stellacci F, Genet C, Schachenmayer J, Genes C, Pupillo G, Samori P, Ebbesen T W 2015 Nat. Mater. 14 1123

    [30]

    Coles D M, Somaschi N, Michetti P, Clark C, Lagoudakis P G, Savvidis P G, Lidzey D G 2014 Nat. Mater. 13 712

    [31]

    Santhosh K, Bitton O, Chuntonov L, Haran G 2016 Nat. Commun. 7 11823

    [32]

    Wang L, Li Q, Wang H Y, Huang J C, Zhang R, Chen Q D, Xu H L, Han W, Shao Z Z, Sun H B 2015 Light Sci. Appl. 4 e245

    [33]

    Wang L, Zhu S J, Wang H Y, Qu S N, Zhang Y L, Zhang J H, Chen Q D, Xu H L, Han W, Yang B, Sun H B 2014 ACS Nano 8 2541

    [34]

    Wang H, Wang H Y, Gao B R, Wang L, Yang Z Y, Du X B, Chen Q D, Song J F, Sun H B 2011 Nanoscale 3 2280

    [35]

    Gao B R, Wang H Y, Hao Y W, Fu L M, Fang H H, Jiang Y, Wang L, Chen Q D, Xia H, Pan L Y, Ma Y G, Sun H B 2010 J. Phys. Chem. B 114 128

    [36]

    Vogel N, Zieleniecki J, Koper I 2012 Nanoscale 4 3820

    [37]

    Liu Y F, Feng J, Cui H F, Zhang Y F, Yin D, Bi Y G, Song J F, Chen Q D, Sun H B 2013 Nanoscale 5 10811

    [38]

    Dintinger J, Klein S, Bustos F, Barnes W L, Ebbesen T W 2005 Phys. Rev. B 71 035424

    [39]

    Cao L, Brongersma L M 2009 Nat. Photonics 3 12

  • [1]

    Sheng Y, Fan D H, Fu J W, Yu C P 2011 Acta Phys. Sin. 60 117302 (in Chinese)[沈云, 范定寰, 傅继武, 于国萍2011物理学报60 117302]

    [2]

    Huang Q, Cao L R, Sun J, Zhang X D, Geng W D, Xiong S Z, Zhao Y, Wang J 2009 Acta Phys. Sin. 58 1980 (in Chinese)[黄茜, 曹丽冉, 孙建, 张晓丹, 耿卫东, 熊绍珍, 赵颖, 王京2009物理学报58 1980]

    [3]

    Gramotnev D K, Bozhevolnyi S I 2010 Nat. Photonics 4 83

    [4]

    Xu B B, Zhang R, Liu X Q, Wang H, Zhang Y L, Jiang H B, Wang L, Ma Z C, Ku J F, Xiao F S, Sun H B 2012 Chem. Commun. 48 1680

    [5]

    Xu B B, Ma Z C, Wang L, Zhang R, Niu L G, Yang Z, Zhang Y L, Zheng W H, Zhao B, Xu Y, Chen Q D, Xia H, Sun H B 2011 Lab on Chip 11 3347

    [6]

    Wang H, Wang H Y, Gao B R, Jiang Y, Yang Z Y, Hao Y W, Chen Q D, Du X B, Sun H B 2011 Appl. Phys. Lett. 98 251501

    [7]

    Jiang Y, Wang H Y, Wang H, Gao B R, Hao Y W, Jin Y, Chen Q D, Sun H B 2011 J. Phys. Chem. C 115 12636

    [8]

    Neogi A, Lee C W, Everitt H O, Kuroda T, Tackeuchi A, Yablonovitch E 2002 Phys. Rev. B 66 153305

    [9]

    Törmö P, Barnes W L 2015 Rep. Prog. Phys. 78 013901

    [10]

    Khitrova G, Gibbs H M, Kira M, Koch S W, Scherer A 2006 Nat. Phys. 2 81

    [11]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [12]

    Schlather A E, Large N, Urban A S, Nordlander P, Halas N J 2013 Nano Lett. 13 3281

    [13]

    Zengin G, Wersäll M, Nilsson S, Antosiewicz T J, Käll M, Shegai T 2015 Phys. Rev. Lett. 114 157401

    [14]

    Ding K, Ning C Z 2012 Light Sci. Appl. 1 e20

    [15]

    Fang Y, Sun M 2015 Light Sci. Appl. 4 e294

    [16]

    Lai Y Y, Lan Y P, Lu T C 2013 Light Sci. Appl. 2 e76

    [17]

    DeLacy B G, Miller O D, Hsu C W, Zander Z, Lacey S, Yagloski R, Fountain A W, Valdes E, Anquillare E, Soljačić M, Johnson S G, Joannopoulos J D 2015 Nano Lett. 15 2588

    [18]

    Hao Y W, Wang H Y, Jiang Y, Chen Q D, Ueno K, Wang W Q, Misawa H, Sun H B 2011 Angew. Chem. 123 7970

    [19]

    Wang H, Wang H Y, Bozzola A, Toma A, Panaro S, Raja W, Alabastri A, Wang L, Chen Q D, Xu H L, De Angelis F, Sun H B, Zaccaria R P 2016 Adv. Funct. Mater. DOI:10.1002/adfm. 201601452

    [20]

    Wang H, Toma A, Wang H Y, Bozzola A, Miele E, Haddadpour A, Veronis G, De Angelis F, Wang L, Chen Q D, Xu H L, Sun H B, Zaccaria R P 2016 Nanoscale 8 13445

    [21]

    Väkeväinen A I, Moerland R J, Rekola H T, Eskelinen A P, Martikainen J P, Kim D H, Törmö P 2014 Nano Lett. 14 1721

    [22]

    Shi L, Hakala T K, Rekola H T, Martikainen J P, Moerland R J, Törmö P 2014 Phys. Rev. Lett. 112 153002

    [23]

    Gómez D E, Lo S S, Davis T J, Hartland G V 2013 J. Phys. Chem. B 117 4340

    [24]

    Gómez D E, Vernon K C, Mulvaney P, Davis T J 2010 Nano Lett. 10 274

    [25]

    Kéna-Cohen S, Maier S A, Bradley D D C 2013 Adv. Opt. Mater. 1 827

    [26]

    Schwartz T, Hutchison J A, Genet C, Ebbesen T W 2011 Phys. Rev. Lett. 106 196405

    [27]

    Hutchison J A, Schwartz T, Genet C, Devaux E, Ebbesen T W 2012 Angew. Chem. Int. Ed. 51 1592

    [28]

    Hutchison J A, Liscio A, Schwartz T, Canaguier-Durand A, Genet C, Palermo V, Samorì P, Ebbesen T W 2013 Adv. Mater. 25 2481

    [29]

    Orgiu E, George J, Hutchison J A, Devaux E, Dayen J F, Doudin B, Stellacci F, Genet C, Schachenmayer J, Genes C, Pupillo G, Samori P, Ebbesen T W 2015 Nat. Mater. 14 1123

    [30]

    Coles D M, Somaschi N, Michetti P, Clark C, Lagoudakis P G, Savvidis P G, Lidzey D G 2014 Nat. Mater. 13 712

    [31]

    Santhosh K, Bitton O, Chuntonov L, Haran G 2016 Nat. Commun. 7 11823

    [32]

    Wang L, Li Q, Wang H Y, Huang J C, Zhang R, Chen Q D, Xu H L, Han W, Shao Z Z, Sun H B 2015 Light Sci. Appl. 4 e245

    [33]

    Wang L, Zhu S J, Wang H Y, Qu S N, Zhang Y L, Zhang J H, Chen Q D, Xu H L, Han W, Yang B, Sun H B 2014 ACS Nano 8 2541

    [34]

    Wang H, Wang H Y, Gao B R, Wang L, Yang Z Y, Du X B, Chen Q D, Song J F, Sun H B 2011 Nanoscale 3 2280

    [35]

    Gao B R, Wang H Y, Hao Y W, Fu L M, Fang H H, Jiang Y, Wang L, Chen Q D, Xia H, Pan L Y, Ma Y G, Sun H B 2010 J. Phys. Chem. B 114 128

    [36]

    Vogel N, Zieleniecki J, Koper I 2012 Nanoscale 4 3820

    [37]

    Liu Y F, Feng J, Cui H F, Zhang Y F, Yin D, Bi Y G, Song J F, Chen Q D, Sun H B 2013 Nanoscale 5 10811

    [38]

    Dintinger J, Klein S, Bustos F, Barnes W L, Ebbesen T W 2005 Phys. Rev. B 71 035424

    [39]

    Cao L, Brongersma L M 2009 Nat. Photonics 3 12

  • [1] Li Yuan-Fang, Jiang Yuan, Zhao Lei. Weak pulse signal detection method based on improved strongly coupled oscillators. Acta Physica Sinica, 2024, 73(4): 040503. doi: 10.7498/aps.73.20231343
    [2] Yan Wei-Zhi, Fan Qing, Yang Peng-Fei, Li Gang, Zhang Peng-Fei, Zhang Tian-Cai. Trapping of single atom and precise control of its coupling strength in micro-optical cavity. Acta Physica Sinica, 2023, 72(11): 114202. doi: 10.7498/aps.72.20222220
    [3] Qi Yun-Ping, Jia Ying-Jun, Zhang Ting, Ding Jing-Hui, Wei Jing-Wen, Wang Xiang-Xian. Dynamically tunable refractive index sensor based on Fano resonance with metal-insulator-metal-graphene nanotube hybrid structure. Acta Physica Sinica, 2022, 71(17): 178101. doi: 10.7498/aps.71.20220652
    [4] Zhao Shi-Hang, Zhang Yuan, Lü Si-Yuan, Cheng Shao-Bo, Zheng Chang-Lin, Wang Lu-Xia. Numerical simulation of strong coupling between silver nanorod and dielectric layer detected by electron energy loss spectrum. Acta Physica Sinica, 2022, 71(14): 147302. doi: 10.7498/aps.71.20220194
    [5] Yan Xiao-Hong, Niu Yi-Jie, Xu Hong-Xing, Wei Hong. Strong coupling of single plasmonic nanoparticles and nanogaps with quantum emitters. Acta Physica Sinica, 2022, 71(6): 067301. doi: 10.7498/aps.71.20211900
    [6] Zhang Meng-Lai, Qin Zhao-Fu, Chen Zhuo. Conditions for surface lattice resonances and enhancement of second harmonic generation based on split-ring resonators. Acta Physica Sinica, 2021, 70(5): 054206. doi: 10.7498/aps.70.20201424
    [7] Guo Qi-Qi, Chen Yi-Hang. Enhanced nonlinear optical effects based on strong coupling between epsilon-near-zero mode and gap surface plasmons. Acta Physica Sinica, 2021, 70(18): 187303. doi: 10.7498/aps.70.20210290
    [8] Wu Han, Wu Jing-Yu, Chen Zhuo. Strong coupling between metasurface based Tamm plasmon microcavity and exciton. Acta Physica Sinica, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [9] Duan Xue-Ke, Ren Juan-Juan, Hao He, Zhang Qi, Gong Qi-Huang, Gu Ying. Interactions between photons and excitons in micro-nano photonic structures. Acta Physica Sinica, 2019, 68(14): 144201. doi: 10.7498/aps.68.20190269
    [10] Chen Ying, Xie Jin-Chao, Zhou Xin-De, Zhang Can, Yang Hui, Li Shao-Hua. Semi-closed T-shaped-disk waveguide filter based on surface-plasmon-induced transparency. Acta Physica Sinica, 2019, 68(23): 237301. doi: 10.7498/aps.68.20191068
    [11] Li Zhi-Ming, Wang Xi, Nie Jin-Song. Formation of periodic ripples on silicon surface ablated by femtosecond laser. Acta Physica Sinica, 2017, 66(10): 105201. doi: 10.7498/aps.66.105201
    [12] Wang Ping, Hu De-Jiao, Xiao Yu-Fei, Pang Lin. Suppression of metal grating to surface plasma radiation. Acta Physica Sinica, 2015, 64(8): 087301. doi: 10.7498/aps.64.087301
    [13] Chen Yong-Yi, Qin Li, Tong Cun-Zhu, Wang Li-Jun. Numerical study of surface plasmon polariton coupling on the metal-insulator hybrid gratings. Acta Physica Sinica, 2013, 62(16): 167301. doi: 10.7498/aps.62.167301
    [14] Xiao Xiao, Zhang Zhi-You, Xiao Zhi-Gang, Xu De-Fu, Deng Chi. The study on optical transfer function of silver superlens. Acta Physica Sinica, 2012, 61(11): 114201. doi: 10.7498/aps.61.114201
    [15] Chen Xiang, Mi Xian-Wu. Characteristics of spontaneous emission from a two-level atom in a very high Q cavity. Acta Physica Sinica, 2011, 60(10): 104204. doi: 10.7498/aps.60.104204
    [16] Li Wei, Wang Yong-Gang, Yang Bo-Jun. Effect of losses for squeezed surface plasmons. Acta Physica Sinica, 2011, 60(2): 024203. doi: 10.7498/aps.60.024203
    [17] Shen Yun, Fan Ding-Huan, Fu Ji-Wu, Yu Guo-Ping. Theoretical research on optical properties of gain-assisted plasmonic coupled resonator optical waveguides. Acta Physica Sinica, 2011, 60(11): 117302. doi: 10.7498/aps.60.117302
    [18] Liu Bing-Can, Lu Zhi-Xin, Yu Li. The dispersion relation for surface plasmon at a metal-Kerr nonlinear medium interface. Acta Physica Sinica, 2010, 59(2): 1180-1184. doi: 10.7498/aps.59.1180
    [19] Song Wen-Tao, Lin Feng, Fang Zhe-Yu, Zhu Xing. Nanofocusing by phase delayed plasmonic nanostructures illuminated with a linearly polarized light. Acta Physica Sinica, 2010, 59(10): 6921-6926. doi: 10.7498/aps.59.6921
    [20] Huang Qian, Cao Li-Ran, Geng Wei-Dong, Sun Jian, Wang Shuo, Xiong Shao-Zhen, Zhang Xiao-Dan, Zhao Ying. Fabrication and optical properties of functional optical silver nano-films. Acta Physica Sinica, 2009, 58(4): 2731-2736. doi: 10.7498/aps.58.2731
Metrics
  • Abstract views:  7594
  • PDF Downloads:  446
  • Cited By: 0
Publishing process
  • Received Date:  11 May 2016
  • Accepted Date:  19 July 2016
  • Published Online:  05 December 2016

/

返回文章
返回