搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

径向偏振光下的长焦、紧聚焦表面等离子体激元透镜

陆云清 呼斯楞 陆懿 许吉 王瑾

引用本文:
Citation:

径向偏振光下的长焦、紧聚焦表面等离子体激元透镜

陆云清, 呼斯楞, 陆懿, 许吉, 王瑾

Plasmonic lens with long focal length and tight focusing under illumination of a radially polarized light

Lu Yun-Qing, Hu Si-Leng, Lu Yi, Xu Ji, Wang Jin
PDF
导出引用
  • 表面等离子体激元透镜(plasmonic lens, PL)是一种通过激发和操控表面等离子体激元 (SPPs), 突破衍射极限, 实现亚波长紧聚焦的纳米光子器件. 如何实现高效率的紧聚焦及调控, 一直是研究PL的重点. 如果选取电矢量沿径向振动的径向偏振光作为PL的入射光, 可从各个方向激发SPPs, 提高紧聚焦的能量效率. 本文提出了一种在径向偏振光激发下的长焦深、长焦距、亚波长紧聚焦的表面等离子体激元透镜, 该透镜由中心T 形微孔、阶梯形同心环和同心环结构组成. 本文首先利用有限元方法数值分析了中心微孔-同心环结构透镜的聚焦特性, 结果显示径向偏振光由底部入射可高效激发SPPs, 并且中心微孔透射光与散射至自由空间的SPPs由于多光束干涉形成了紧聚焦. 为进一步压缩焦斑、增加焦距、加深焦深、改善透镜聚焦特性, 本文引入中心T形微孔-阶梯形同心环结构, 从而对阶梯表面的SPPs同时提供了相位调制和传播方向的控制. 经过参数优化, 该透镜结构实现了光斑焦深、半高宽、焦距分别是入射光波长的2.5倍、0.388 倍、3.22倍的亚波长紧聚焦; 而且该透镜具有结构紧凑、尺寸小、易于集成的优点, 满足了纳米光子学对于器件微型化和高度集成化的要求. 该研究结果在纳米光子集成、近场光学成像与探测、纳米光刻等相关领域具有潜在的应用价值.
    Plasmonic lens (PL) is a nano-optical device, with which a tight focusing spot in a subwavelength-scale can be achieved by exciting and controlling surface plasmon polaritons (SPPs), thus the diffraction limit can be broken for attaining the shorter effective wavelength of the SPPs. The key issue in studying the PL is to achieve a tight focusing point and focus-control effectively. Optimal plasmonic focusing can be achieved by utilizing the radially polarized light and the rotational symmetric structures of the PL. Radially polarized light is a cylindrical vector beam whose local polarization of electric field is always parallel to the radial direction. As a radially polarized light is used as the incident light in a PL, the SPPs can be excited in all directions, so as to increase the efficiency of focussing. The focussing efficiency can be further increased, and the characteristics of the focus, such as spot size, shape, and strength etc., can be manipulated through appropriate designs of the PL structures. In this work, under an illumination of a radially polarized light, a new type of plasmonic lens is proposed to achieve a long depth of focus (DOF), a long focal length, and a sub-wavelength-scale tight focussing spot. This kind of plasmonic lens consists of a T-shape micro-hole, concentric rings, and multi-level step-like structures. The focussing properties of such plasmonic lenses are analyzed in terms of the finite element method (FEM). Simulation results show that SPPs can be excited efficiently in such structures and the tight-focusing is realized via the multiple-beam interference between the light radiating from the concentric rings and the transmitted light from the center hole. The T-shape micro-hole and step-like concentric ring structures can provide control for the phase modulation and the propagation direction of the SPPs along the bottom of the groove, thus leading to a compressed focal spot, a longer focal length, an increased depth of focus, and to improving the focussing properties. In an optimized PL design, a focal spot of ~2.5λ0 DOF, ~0.388λ0 FWHM, and ~3.22λ0 focal length is achieved under the illumination of a radially polarized light (λ0=632.8 nm). The PL structure is compact, and can be easily integrated with other nano-devices. The PL proposed above has potential applications in nano-scale photonic integration, near-field imaging and sensing, nano-photolithography, and in other related areas.
    • 基金项目: 南京邮电大学基金(批准号: NY211060, NY213028, NY212008)和江苏省基础研究计划基金(批准号: BK20131383) 资助的课题.
    • Funds: Project supported by the Nanjing University of Posts and Telecommunications Foundation, China (Grant Nos. NY211060, NY213028, NY212008), and the Jiangsu Provincial Research Foundation for Basic Research, China (Grant No. BK20131383).
    [1]

    Chen J, Li Z, Zhang X, Xiao J, Gong Q 2013 Sci. Rep. 3 1451

    [2]

    Raether H 1988 Surface plasmons on smooth surfaces (Berlin Heidelberg: Springer)

    [3]

    Ghaemi H F, Thio T, Grupp D E, Ebbesen T W, Lezec H J 1998 Phys. Rev. B 58 6779

    [4]

    Martin-Moreno L, Garcia-Vidal F, Lezec H, Pellerin K, Thio T, Pendry J, Ebbesen T 2001 Phys. Rev. Lett. 86 1114

    [5]

    Lezec H J, Degiron A, Devaux E, Linke R, Martin-Moreno L, Garcia-Vidal F, Ebbesen T W 2002 Science 297 820

    [6]

    Zheng G G, Xu L H, Pei S X, Chen Y Y 2014 Chin. Phys. B 23 034213

    [7]

    Chen J, Wang C, Lu G, Li W, Xiao J, Gong Q 2012 Opt. Express. 20 17734

    [8]

    Wang J, Fu Y Q 2013 Chin. Phys. B 22 090206

    [9]

    Zhang M, Wang J, Tian Q 2013 Opt. Express. 21 9414

    [10]

    Chen W, Abeysinghe D C, Nelson R L, Zhan Q 2009 Nano Lett. 9 4320

    [11]

    Yi J M, Cuche A, Devaux E, Genet C, Ebbesen T W 2014 ACS Photonics 1 365

    [12]

    Peng R, Li X, Zhao Z, Wang C, Hong M, Luo X 2014 Plasmonics 9 55

    [13]

    Chen J 2013 Plasmonics 8 931

    [14]

    Song W T, Lin F, Fang Z Y, Zhu X 2010 Acta Phys. Sin. 59 6921 (in Chinese) [宋文涛, 林峰, 方哲宇, 朱星 2010 物理学报 59 6921]

    [15]

    Ebbesen T W, Lezec H, Ghaemi H, Thio T, Wolff P 1998 Nature 391 667

    [16]

    Genet C, Ebbesen T W 2007 Nature 445 39

    [17]

    Goh X M, Lin L, Roberts A 2011 J. Opt. Soc. Am. B 28 547

    [18]

    Liu Z, Lee H, Xiong Y, Sun C, Zhang X 2007 Science 315 1686

    [19]

    Smolyaninov I I, Hung Y J, Davis C C 2007 Science 315 1699

    [20]

    Kim S, Jin J, Kim Y J, Park I Y, Kim Y, Kim S W 2008 Nature 453 757

    [21]

    Lee B, Kim S, Kim H, Lim Y 2010 Prog. Quantum Electron. 34 47

    [22]

    Li L, Li T, Wang S, Zhu S, Zhang X 2011 Nano Lett. 11 4357

    [23]

    Jia B, Shi H, Li J, Fu Y, Du C, Gu M 2009 Appl. Phys. Lett. 94 151912

    [24]

    Min C J, Shen Z, Shen J F, Zhang Y Q, Fang H, Yuan G H, Du L, Zhu S, Lei T, Yuan X C 2013 Nat. Commun. 4 2891

    [25]

    Zhao W Q, Tang F, Qiu L R, Liu D L 2013 Acta Phys. Sin. 62 054201 (in Chinese) [赵维谦, 唐芳, 邱丽荣, 刘大礼 2013 物理学报 62 054201]

    [26]

    Wang Z, Gao C Q, Xin J T 2012 Acta Phys. Sin. 61 124209 (in Chinese) [王铮, 高春清, 辛璟焘 2012 物理学报 61 124209]

    [27]

    Wang H F, Shi L P, Lukyanchuk B, Sheppard C, Chong C T 2008 Nature Photonics 2 501

    [28]

    Jackson J D 1999 Classical electrodynamics (3rd ed.) (New York: Wiley)

    [29]

    Vial A, Grimault A S, Macías D, Barchiesi D, de La Chapelle M L 2005 Phys. Rev. B 71 085416

    [30]

    Rakic A D, Djurišic A B, Elazar J M, Majewski M L 1998 Appl. Opt. 37 5271

  • [1]

    Chen J, Li Z, Zhang X, Xiao J, Gong Q 2013 Sci. Rep. 3 1451

    [2]

    Raether H 1988 Surface plasmons on smooth surfaces (Berlin Heidelberg: Springer)

    [3]

    Ghaemi H F, Thio T, Grupp D E, Ebbesen T W, Lezec H J 1998 Phys. Rev. B 58 6779

    [4]

    Martin-Moreno L, Garcia-Vidal F, Lezec H, Pellerin K, Thio T, Pendry J, Ebbesen T 2001 Phys. Rev. Lett. 86 1114

    [5]

    Lezec H J, Degiron A, Devaux E, Linke R, Martin-Moreno L, Garcia-Vidal F, Ebbesen T W 2002 Science 297 820

    [6]

    Zheng G G, Xu L H, Pei S X, Chen Y Y 2014 Chin. Phys. B 23 034213

    [7]

    Chen J, Wang C, Lu G, Li W, Xiao J, Gong Q 2012 Opt. Express. 20 17734

    [8]

    Wang J, Fu Y Q 2013 Chin. Phys. B 22 090206

    [9]

    Zhang M, Wang J, Tian Q 2013 Opt. Express. 21 9414

    [10]

    Chen W, Abeysinghe D C, Nelson R L, Zhan Q 2009 Nano Lett. 9 4320

    [11]

    Yi J M, Cuche A, Devaux E, Genet C, Ebbesen T W 2014 ACS Photonics 1 365

    [12]

    Peng R, Li X, Zhao Z, Wang C, Hong M, Luo X 2014 Plasmonics 9 55

    [13]

    Chen J 2013 Plasmonics 8 931

    [14]

    Song W T, Lin F, Fang Z Y, Zhu X 2010 Acta Phys. Sin. 59 6921 (in Chinese) [宋文涛, 林峰, 方哲宇, 朱星 2010 物理学报 59 6921]

    [15]

    Ebbesen T W, Lezec H, Ghaemi H, Thio T, Wolff P 1998 Nature 391 667

    [16]

    Genet C, Ebbesen T W 2007 Nature 445 39

    [17]

    Goh X M, Lin L, Roberts A 2011 J. Opt. Soc. Am. B 28 547

    [18]

    Liu Z, Lee H, Xiong Y, Sun C, Zhang X 2007 Science 315 1686

    [19]

    Smolyaninov I I, Hung Y J, Davis C C 2007 Science 315 1699

    [20]

    Kim S, Jin J, Kim Y J, Park I Y, Kim Y, Kim S W 2008 Nature 453 757

    [21]

    Lee B, Kim S, Kim H, Lim Y 2010 Prog. Quantum Electron. 34 47

    [22]

    Li L, Li T, Wang S, Zhu S, Zhang X 2011 Nano Lett. 11 4357

    [23]

    Jia B, Shi H, Li J, Fu Y, Du C, Gu M 2009 Appl. Phys. Lett. 94 151912

    [24]

    Min C J, Shen Z, Shen J F, Zhang Y Q, Fang H, Yuan G H, Du L, Zhu S, Lei T, Yuan X C 2013 Nat. Commun. 4 2891

    [25]

    Zhao W Q, Tang F, Qiu L R, Liu D L 2013 Acta Phys. Sin. 62 054201 (in Chinese) [赵维谦, 唐芳, 邱丽荣, 刘大礼 2013 物理学报 62 054201]

    [26]

    Wang Z, Gao C Q, Xin J T 2012 Acta Phys. Sin. 61 124209 (in Chinese) [王铮, 高春清, 辛璟焘 2012 物理学报 61 124209]

    [27]

    Wang H F, Shi L P, Lukyanchuk B, Sheppard C, Chong C T 2008 Nature Photonics 2 501

    [28]

    Jackson J D 1999 Classical electrodynamics (3rd ed.) (New York: Wiley)

    [29]

    Vial A, Grimault A S, Macías D, Barchiesi D, de La Chapelle M L 2005 Phys. Rev. B 71 085416

    [30]

    Rakic A D, Djurišic A B, Elazar J M, Majewski M L 1998 Appl. Opt. 37 5271

  • [1] 徐睆垚, 徐亮, 沈先春, 徐寒杨, 孙永丰, 刘文清, 刘建国. 基于红外多光谱相机分析长后焦距对无热化设计的影响. 物理学报, 2021, 70(18): 184201. doi: 10.7498/aps.70.20210217
    [2] 王晓雷, 赵洁惠, 李淼, 姜光科, 胡晓雪, 张楠, 翟宏琛, 刘伟伟. 基于人工表面等离激元探针实现太赫兹波的紧聚焦和场增强. 物理学报, 2020, 69(5): 054201. doi: 10.7498/aps.69.20191531
    [3] 钟哲强, 母杰, 王逍, 张彬. 基于紧聚焦方式的阵列光束相干合成特性分析. 物理学报, 2020, 69(9): 094204. doi: 10.7498/aps.69.20200034
    [4] 曹重阳, 陆健能, 张恒闻, 朱竹青, 王晓雷, 顾兵. 紧聚焦角向偏振分数阶涡旋光诱导磁化场特性. 物理学报, 2020, 69(16): 167802. doi: 10.7498/aps.69.20200269
    [5] 刘森森, 宋华冬, 林伟强, 陈旭东, 蒲继雄. 非均匀关联径向偏振部分相干光的产生. 物理学报, 2019, 68(7): 074201. doi: 10.7498/aps.68.20182289
    [6] 陈顺意, 丁攀峰, 蒲继雄. 离轴径向偏振光束及其传输特性. 物理学报, 2015, 64(20): 204201. doi: 10.7498/aps.64.204201
    [7] 刘永强, 孔令宝, 杜朝海, 刘濮鲲. 基于类表面等离子体激元的矩形金属光栅色散特性的研究. 物理学报, 2015, 64(17): 174102. doi: 10.7498/aps.64.174102
    [8] 周娅, 吴正茂, 樊利, 孙波, 何洋, 夏光琼. 基于椭圆偏振光注入垂直腔表面发射激光器的正交偏振模式单周期振荡产生两路光子微波. 物理学报, 2015, 64(20): 204203. doi: 10.7498/aps.64.204203
    [9] 赵维谦, 唐芳, 邱丽荣, 刘大礼. 轴对称矢量光束聚焦特性研究现状及其应用. 物理学报, 2013, 62(5): 054201. doi: 10.7498/aps.62.054201
    [10] 程木田. 经典光场相干控制金属纳米线表面等离子体传输. 物理学报, 2011, 60(11): 117301. doi: 10.7498/aps.60.117301
    [11] 李巍, 王永钢, 杨伯君. 损耗对表面等离子体激元压缩态的影响. 物理学报, 2011, 60(2): 024203. doi: 10.7498/aps.60.024203
    [12] 于永江, 陈建农, 闫金良, 王菲菲. 聚焦径向调制Bessel-Gaussian光束实现亚波长尺寸纵向偏振光束. 物理学报, 2011, 60(4): 044205. doi: 10.7498/aps.60.044205
    [13] 徐凯, 杨艳芳, 何英, 韩小红, 李春芳. 局域椭圆偏振光束强聚焦性质的研究. 物理学报, 2010, 59(9): 6125-6130. doi: 10.7498/aps.59.6125
    [14] 宋文涛, 林峰, 方哲宇, 朱星. 线性偏振光激发的错位表面等离子体激元纳米结构聚焦. 物理学报, 2010, 59(10): 6921-6926. doi: 10.7498/aps.59.6921
    [15] 龙拥兵, 张剑, 汪国平. 基于表面等离子体激元共振的飞秒抽运探测技术研究. 物理学报, 2009, 58(11): 7722-7726. doi: 10.7498/aps.58.7722
    [16] 徐晓辉, 李 晖. 基于长焦区聚焦换能器的扫描光声乳腺成像技术. 物理学报, 2008, 57(7): 4623-4628. doi: 10.7498/aps.57.4623
    [17] 龚华平, 吕志伟, 林殿阳, 吕月兰. 透镜焦距对受激布里渊散射光限幅特性的影响. 物理学报, 2006, 55(6): 2735-2739. doi: 10.7498/aps.55.2735
    [18] 曹 伟, 兰鹏飞, 陆培祥. 紧聚焦激光束作用于电子实现单个阿秒脉冲输出. 物理学报, 2006, 55(5): 2115-2121. doi: 10.7498/aps.55.2115
    [19] 王骐, 陈建新, 夏元钦, 陈德应. 基于OFI椭圆偏振光场等离子体中电离电子能量分布的研究. 物理学报, 2002, 51(5): 1035-1039. doi: 10.7498/aps.51.1035
    [20] 莫党, 叶贤京. 离子注入硅的椭圆偏振光谱和光性. 物理学报, 1981, 30(10): 1287-1294. doi: 10.7498/aps.30.1287
计量
  • 文章访问数:  3530
  • PDF下载量:  4641
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-03
  • 修回日期:  2014-12-19
  • 刊出日期:  2015-05-05

径向偏振光下的长焦、紧聚焦表面等离子体激元透镜

  • 1. 南京邮电大学光电工程学院, 南京 210023
    基金项目: 南京邮电大学基金(批准号: NY211060, NY213028, NY212008)和江苏省基础研究计划基金(批准号: BK20131383) 资助的课题.

摘要: 表面等离子体激元透镜(plasmonic lens, PL)是一种通过激发和操控表面等离子体激元 (SPPs), 突破衍射极限, 实现亚波长紧聚焦的纳米光子器件. 如何实现高效率的紧聚焦及调控, 一直是研究PL的重点. 如果选取电矢量沿径向振动的径向偏振光作为PL的入射光, 可从各个方向激发SPPs, 提高紧聚焦的能量效率. 本文提出了一种在径向偏振光激发下的长焦深、长焦距、亚波长紧聚焦的表面等离子体激元透镜, 该透镜由中心T 形微孔、阶梯形同心环和同心环结构组成. 本文首先利用有限元方法数值分析了中心微孔-同心环结构透镜的聚焦特性, 结果显示径向偏振光由底部入射可高效激发SPPs, 并且中心微孔透射光与散射至自由空间的SPPs由于多光束干涉形成了紧聚焦. 为进一步压缩焦斑、增加焦距、加深焦深、改善透镜聚焦特性, 本文引入中心T形微孔-阶梯形同心环结构, 从而对阶梯表面的SPPs同时提供了相位调制和传播方向的控制. 经过参数优化, 该透镜结构实现了光斑焦深、半高宽、焦距分别是入射光波长的2.5倍、0.388 倍、3.22倍的亚波长紧聚焦; 而且该透镜具有结构紧凑、尺寸小、易于集成的优点, 满足了纳米光子学对于器件微型化和高度集成化的要求. 该研究结果在纳米光子集成、近场光学成像与探测、纳米光刻等相关领域具有潜在的应用价值.

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回