Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A nano-silicon-photonic switch driven by an optical gradient force

Lin Jian-Xiao Wu Jiu-Hui Liu Ai-Qun Chen Zhe Lei Hao

Citation:

A nano-silicon-photonic switch driven by an optical gradient force

Lin Jian-Xiao, Wu Jiu-Hui, Liu Ai-Qun, Chen Zhe, Lei Hao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Using light to dynamically and stably redirect the flow of another beam of light is a long-term goal for photonic-integrated circuits. However, it is challenging to realize a practically all-optical switching device in silicon owing to its weak optical nonlinearity. Major published work on all-optical switches were using single-photon absorption and two-photon absorption, which requires ultrahigh switching energy. This paper presents a nano-silicon-photonic all-optical switch driven by an optical gradient force, in which a fast switching speed with low power consumption is obtained. Each switching element is composed of a waveguide crossing connection and a micro-ring resonator. The ring resonator is side-coupled to a double-etched waveguide crossing, while the micro-ring resonator is partially released from the substrate and becomes free-standing. When the “drop” port is in “OFF” state, the wavelength of the signal light from the “input” port does not satisfy the resonant condition in the micro-ring. Therefore, light is mainly transmitted to the "thru" port without control light. When a control light is loaded to the “add” port, of which the wavelength satisfies the resonance condition in the micro-ring, a strong optical gradient force is generated by the induced evanescent optical field. The freestanding arc of the ring is then bent down to the substrate, leading to a cavity resonance wavelength shift. As a result, the signal light is diverted to the “drop” port and the corresponding transmission state is switched to the “ON” state. The optical switch is fabricated by nano-photonic fabrication processes using standard silicon-on-insulator (SOI) wafer. The waveguide structures have a width of 450 nm and a height of 220 nm for a single mode transmission; the outer radius of the ring in the switching element is 15 μm; the coupling gap between the ring and the nano-waveguide is 200 nm; the system is fabricated through two-step lithography and plasma dry etching processes while the free-standing arc is released by undercutting the buried oxide layer. #br#A switching time of 180 ns(rise) and 170 ns (fall) is experimentally demonstrated, which is much faster than that of conventional optical switches. The present optical switch can reach a high extinction ratio (10.67 dB) and a low crosstalk (-11.01 dB). In addition, the proposed switch has the advantages of compact size and low power consumption. Potential applications of this optical switch include photonic integrated circuits, signal processing, and high speed optical communication networks.
    • Funds: Project supported by the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT1172).
    [1]

    SahaE S, Manley D, Deogun J S 2009 IEEE 3rd Int. Symposium on Advanced Networks and Telecom. Syst. (ANTS) 1 1

    [2]

    Wu M C, Solgaard O, Ford J E 2006 J. Lightwave Technol. 24 4433

    [3]

    Zhu W M, Zhong T, Liu A Q, Zhang X M, Yu M 2007 Appl. Phys. Lett. 91 261106

    [4]

    Fang Q, Song J F, Liow T Y, Cai H, Yu B M, Lo G Q, Kwong D L 2011 IEEE Photon. Technol. Lett. 23 525

    [5]

    Dong P, Liao S, Liang H, Qian W, Wang X, Shafiiha R, Feng D, Li G, Zheng Z, A Krishnamoorthy V, Asghari M 2010 Opt. Lett. 35 3246

    [6]

    Didosyan Y, Hauser H, Reider A G 2002 IEEE Trans. Magn. 38 3243

    [7]

    Lin L Y, Goldstein E L, Tkach R W 1998 IEEE Photon. Technol. Lett. 10 525

    [8]

    Teo S H G, Liu A Q, Zhang J B, Hong M H, Singh J, Yu M B, Singh N, Lo G Q 2008 Opt. Express 16 7842

    [9]

    Tanabe T, Notomi M, Shinya A, Mitsugi S, Kuramochi E 2005 Appl. Phys. Lett. 87 151112

    [10]

    Espinola R L, Tsai M C, Yardley J T, Osgood R M Jr. 2003 IEEE Photon. Technol. Lett. 15 1366

    [11]

    Almeida, Vilson R, Barrios, Carlos A, Panepucci, Roberto R, Lipson, Michal 2004 Nature 431 1081

    [12]

    Dong P, Preble SF, Lipson M 2007 Opt. Express 15 9600

    [13]

    Först M1, Niehusmann J, Plötzing T, Bolten J, Wahlbrink T, Moormann C, Kurz H 2007 Opt Lett. 32 2046

    [14]

    Waldow M, Plötzing T, Gottheil M, Först M, Bolten J, Wahlbrink T, Kurz H 2008 Opt. Express 16 7693

    [15]

    Wen Y H, Kuzucu O, Hou T, Lipson M, Gaeta A L 2011 Opt Lett. 36 1413

    [16]

    Thourhout D V, Roels J 2010 Nat. Photonics. 4 211

    [17]

    Weis S, Rivie’re R, Del_eglise S, Gavartin E, Arcizet O, Schliesser A, Kippenberg T J 2010 Science 330 1520

    [18]

    Li M, Pernice W H P, Tang H X 2009 Phys. Rev. Lett. 103 223901

    [19]

    Lee B G, Biberman A, Sherwood N-Droz, Poitras C B, Lipson M, Bergman K 2009 Lightwave J Technol. 27 2900

    [20]

    Yu Y F, Zhang J B, Bourouina T, Liu A Q 2012 Appl. Phys. Lett. 100 093108

    [21]

    Cai H, Dong B, Tao J F, Ding L, Tsai J M, Lo G Q, Liu A Q, Kwong D L 2013 Appl. Phys. Lett. 102 023103

    [22]

    Little B E, Chu S T, Haus H A, Foresi J, Laine J P 1997 Lightwave J Technol 15 988

    [23]

    Wiederhecker G S, Chen L, Gondarenko A, Lipson M 2009 Nature 462 633

  • [1]

    SahaE S, Manley D, Deogun J S 2009 IEEE 3rd Int. Symposium on Advanced Networks and Telecom. Syst. (ANTS) 1 1

    [2]

    Wu M C, Solgaard O, Ford J E 2006 J. Lightwave Technol. 24 4433

    [3]

    Zhu W M, Zhong T, Liu A Q, Zhang X M, Yu M 2007 Appl. Phys. Lett. 91 261106

    [4]

    Fang Q, Song J F, Liow T Y, Cai H, Yu B M, Lo G Q, Kwong D L 2011 IEEE Photon. Technol. Lett. 23 525

    [5]

    Dong P, Liao S, Liang H, Qian W, Wang X, Shafiiha R, Feng D, Li G, Zheng Z, A Krishnamoorthy V, Asghari M 2010 Opt. Lett. 35 3246

    [6]

    Didosyan Y, Hauser H, Reider A G 2002 IEEE Trans. Magn. 38 3243

    [7]

    Lin L Y, Goldstein E L, Tkach R W 1998 IEEE Photon. Technol. Lett. 10 525

    [8]

    Teo S H G, Liu A Q, Zhang J B, Hong M H, Singh J, Yu M B, Singh N, Lo G Q 2008 Opt. Express 16 7842

    [9]

    Tanabe T, Notomi M, Shinya A, Mitsugi S, Kuramochi E 2005 Appl. Phys. Lett. 87 151112

    [10]

    Espinola R L, Tsai M C, Yardley J T, Osgood R M Jr. 2003 IEEE Photon. Technol. Lett. 15 1366

    [11]

    Almeida, Vilson R, Barrios, Carlos A, Panepucci, Roberto R, Lipson, Michal 2004 Nature 431 1081

    [12]

    Dong P, Preble SF, Lipson M 2007 Opt. Express 15 9600

    [13]

    Först M1, Niehusmann J, Plötzing T, Bolten J, Wahlbrink T, Moormann C, Kurz H 2007 Opt Lett. 32 2046

    [14]

    Waldow M, Plötzing T, Gottheil M, Först M, Bolten J, Wahlbrink T, Kurz H 2008 Opt. Express 16 7693

    [15]

    Wen Y H, Kuzucu O, Hou T, Lipson M, Gaeta A L 2011 Opt Lett. 36 1413

    [16]

    Thourhout D V, Roels J 2010 Nat. Photonics. 4 211

    [17]

    Weis S, Rivie’re R, Del_eglise S, Gavartin E, Arcizet O, Schliesser A, Kippenberg T J 2010 Science 330 1520

    [18]

    Li M, Pernice W H P, Tang H X 2009 Phys. Rev. Lett. 103 223901

    [19]

    Lee B G, Biberman A, Sherwood N-Droz, Poitras C B, Lipson M, Bergman K 2009 Lightwave J Technol. 27 2900

    [20]

    Yu Y F, Zhang J B, Bourouina T, Liu A Q 2012 Appl. Phys. Lett. 100 093108

    [21]

    Cai H, Dong B, Tao J F, Ding L, Tsai J M, Lo G Q, Liu A Q, Kwong D L 2013 Appl. Phys. Lett. 102 023103

    [22]

    Little B E, Chu S T, Haus H A, Foresi J, Laine J P 1997 Lightwave J Technol 15 988

    [23]

    Wiederhecker G S, Chen L, Gondarenko A, Lipson M 2009 Nature 462 633

  • [1] Lu Meng-Jia, Yun Bin-Feng. Silicon-based compact mode converter using bricked subwavelength grating. Acta Physica Sinica, 2023, 72(16): 164203. doi: 10.7498/aps.72.20230673
    [2] Wang Jing-Li, Zhang Jian-Zhe, Chen He-Ming. Design and simulation of polarization-insensitive ring resonator based on subwavelength grating and sandwiched structure. Acta Physica Sinica, 2021, 70(12): 124201. doi: 10.7498/aps.70.20201965
    [3] Tu Xin, Chen Zhen-Min, Fu Hong-Yan. Reivew of silicon photonic switches. Acta Physica Sinica, 2019, 68(10): 104210. doi: 10.7498/aps.68.20190011
    [4] Wang Shuo, Chang Yong-Wei, Chen Jing, Wang Ben-Yan, He Wei-Wei, Ge Hao. Total ionizing dose effects on innovative silicon-on-insulator static random access memory cell. Acta Physica Sinica, 2019, 68(16): 168501. doi: 10.7498/aps.68.20190405
    [5] Li Zhi-Quan, Bai Lan-Di, Gu Er-Dan, Xie Rui-Jie, Liu Tong-Lei, Niu Li-Yong, Feng Dan-Dan, Yue Zhong. Simulation analysis of micro-ring resonator based on diamond multilayer waveguide structure. Acta Physica Sinica, 2017, 66(20): 204203. doi: 10.7498/aps.66.204203
    [6] Qin Chen, Yu Hui, Ye Qiao-Bo, Wei Huan, Jiang Xiao-Qing. An improved Mach-Zehnder acousto-optic modulator on a silicon-on-insulator platform. Acta Physica Sinica, 2016, 65(1): 014304. doi: 10.7498/aps.65.014304
    [7] Liu Yuan, Chen Hai-Bo, He Yu-Juan, Wang Xin, Yue Long, En Yun-Fei, Liu Mo-Han. Radiation effects on the low frequency noise in partially depleted silicon on insulator transistors. Acta Physica Sinica, 2015, 64(7): 078501. doi: 10.7498/aps.64.078501
    [8] Shi Yan-Mei, Liu Ji-Zhi, Yao Su-Ying, Ding Yan-Hong, Zhang Wei-Hua, Dai Hong-Li. A dual-trench silicon on insulator high voltage device with an L-shaped source field plate. Acta Physica Sinica, 2014, 63(23): 237305. doi: 10.7498/aps.63.237305
    [9] Zhang Xin, Li Zhi-Quan, Tong Kai. A cross bus single microring electro-optical switch with U bend waveguide. Acta Physica Sinica, 2014, 63(9): 094207. doi: 10.7498/aps.63.094207
    [10] Liu Yan, Zhang Wen-Ming, Zhong Zuo-Yang, Peng Zhi-Ke, Meng Guang. Nonlinear dynamic analysis of nano-resonator driven by optical gradient force. Acta Physica Sinica, 2014, 63(2): 026201. doi: 10.7498/aps.63.026201
    [11] Zhang Li-Bin, Chen Shao-Wu, Fei Yong-Hao, Cao Tong-Tong, Cao Yan-Mei, Lei Xun. Study of data format transform with optical waveguide resonators. Acta Physica Sinica, 2013, 62(19): 194201. doi: 10.7498/aps.62.194201
    [12] Qi Xin-Yuan, Cao Zheng, Bai Jin-Tao. The beam propagation based on one-dimensional separation modulated photonic lattices. Acta Physica Sinica, 2013, 62(6): 064217. doi: 10.7498/aps.62.064217
    [13] Yang Biao, Li Zhi-Yong, Xiao Xi, Nemkova Anastasia, Yu Jin-Zhong, Yu Yu-De. The progress of silicon-based grating couplers. Acta Physica Sinica, 2013, 62(18): 184214. doi: 10.7498/aps.62.184214
    [14] Wu Fang-Fang, Shen Yi-Feng, Wang Yong-Chun, Han Kui, Zhou Jie, Zhang Yuan, Chen Qiong. A compact and tunable photonic crystal switch based on defect resonance. Acta Physica Sinica, 2011, 60(1): 017801. doi: 10.7498/aps.60.017801
    [15] Zhou Jun, Ren Hai-Dong, Feng Ya-Ping. The pulsating propagation of spatial soliton in strongly nonlocal optical lattice. Acta Physica Sinica, 2010, 59(6): 3992-4000. doi: 10.7498/aps.59.3992
    [16] Xu Da-Wei, Liang Zhong-Zhu, Liang Jing-Qiu, Li Wei, Li Xiao-Qi, Sun Zhi-Dan, Wang Wei-Biao. Simulation and fabrication of flexible cantilever electromagnet actuated optical switch. Acta Physica Sinica, 2010, 59(4): 2479-2484. doi: 10.7498/aps.59.2479
    [17] Qin Xiao-Juan, Shao Yi-Quan, Guo Qi. Steering of optical beams in strongly nonlocal nonlinear media by spatial phase modulation. Acta Physica Sinica, 2007, 56(9): 5269-5275. doi: 10.7498/aps.56.5269
    [18] Miao Qing-Yuan, Huang De-Xiu, Zhang Xin-Liang, Yu Yong-Lin, Hong Wei. Theoretical study of wavelength conversion based on integrated twin-guide semiconductor optical amplifier optical switch. Acta Physica Sinica, 2007, 56(2): 902-907. doi: 10.7498/aps.56.902
    [19] Xue Ting, Yu Jian, Yang Tian-Xin, Ni Wen-Jun, Li Shen-Chen. . Acta Physica Sinica, 2002, 51(7): 1521-1529. doi: 10.7498/aps.51.1521
    [20] YU ZHONG-YUAN, ZHANG XIAO-GUANG, LIU XIU-MIN. SHORT OPTICAL PULSE SWITCHING IN THREE-CORE NONLINEAR FIBER COUPLERS. Acta Physica Sinica, 2001, 50(5): 904-909. doi: 10.7498/aps.50.904
Metrics
  • Abstract views:  5975
  • PDF Downloads:  224
  • Cited By: 0
Publishing process
  • Received Date:  16 January 2015
  • Accepted Date:  03 February 2015
  • Published Online:  05 August 2015

/

返回文章
返回