Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Reivew of silicon photonic switches

Tu Xin Chen Zhen-Min Fu Hong-Yan

Citation:

Reivew of silicon photonic switches

Tu Xin, Chen Zhen-Min, Fu Hong-Yan
PDF
HTML
Get Citation
  • Silicon photonic switch is recognized as a cost-effective optical switching technology because it has many applications in long-haul telecommunication networks, short-reach data center and high-performance computing. In this paper, the research progress of various silicon photonic switch technologies is reviewed systematically. Firstly, the principles of three kinds of switch technologies including Mach-Zehnder interferometer (thermo-optic and carrier-injection types), micro-ring resonator (thermo-optic and carrier-injection types) and micro-electro-mechanical-system actuated waveguide coupler (electrostatic actuated type) are introduced. The switch technologies with the state-of-the-art insertion loss, crosstalk, switch time, footprint and power consumption are summarized and compared. Then the recent demonstrations of large-port silicon photonic matrix based on the above switch technologies are discussed. In this paper, we also investigate the key technologies such as topological architecture, passive components and optoelectronic packaging, which affect the performance of large-port optical switch matrix. Specifically, we study the scalability of various topologies, low-loss/broadband waveguide components, high-density optical/electrical packaging and control interface to improve the overall performance of the silicon photonic switch matrix. Finally, we discuss the critical technical challenges that might hamper the commercialization of silicon photonic switches and envision their future.
      Corresponding author: Fu Hong-Yan, hyfu@sz.tsinghua.edu.cn
    • Funds: Project supported by the Shenzhen Technology and Innovation Council, China (Grant Nos. JCYJ20170818094001391, JCYJ20180507183815699, KQJSCX20170727163424873) and Tsinghua-Berkeley Shenzhen Institute (TBSI) Faculty Start-up Fund, China.
    [1]

    Basch E B, Egorov R, Gringeri S, Elby S 2006 IEEE J. Sel. Top. Quantum Electron. 12 615Google Scholar

    [2]

    Jensen R, Lord A, Parsons N 2010 In Proceedings of 2010 European Conference on Optical Communication Turino, Italy, September 19−23, 2010 Mo.2.D.2

    [3]

    Colbourne P D, Collings B 2011 In Proceedings of 2011 Optical Fiber Communications Conference , Los Angeles, USA, March 6-10, 2011 OTuD1

    [4]

    Farrington N P G, Radhakrishnan S, Bazzaz H H, Subramanya V, Fainman Y, Papen G, Vahdat A 2011 ACM SIGCOMM Computer Communication Review 41 339

    [5]

    Alan Benner D M K, Pepeljugoski P K, Budd R A, Hougham G, Fasano B V, Marston K, Bagheri H, Seminaro E J, Xu H, Meadowcroft D, Fields M H, McColloch L, Robinson M, Miller F W, Kaneshiro R, Granger R, Childers D, Childers E 2010 In Proceedings of 2010 Optical Fiber Communications Conference San Diego, USA, March 21-25, 2010 OTuH1

    [6]

    Schares L, Lee B G, Checconi F, Budd R, Rylyakov A, Dupuis N, Petrini F, Schow C L, Fuentes P, Mattes O, Minkenberg C 2014 IEEE Micro. 34 52Google Scholar

    [7]

    Wu M C, Solgaard O, Ford J E 2006 J. Lightwave Technol. 24 4433Google Scholar

    [8]

    Frisken S, Baxter G, Abakoumov D, Hao Z, Clarke I, Poole S 2011 In Proceedings of 2011 Optical Fiber Communications Conference Los Angeles, USA, March 6-10, 2011 OTuM3

    [9]

    Chiba A, Kawanishi T, Sakamoto T, Higuma K, Izutsu M 2007 In Proceedings of 2007 Conference on Photonics in Switching San Francisco, USA, August 19-22, 2007 TuB1.4

    [10]

    Tanaka S, Jeong S, Yamazaki S, Uetake A, Tomabechi S, Ekawa M, Morito K 2009 IEEE J. Sel. Top. Quantum Electron. 45 1155Google Scholar

    [11]

    Earnshaw M P, Soole J B D, Cappuzzo M, Gomez L, Laskowski E, Paunescu A 2003 IEEE Photonics Technol. Lett. 15 810Google Scholar

    [12]

    Cheng Q, Bahadori M, Rumley S, Bergman K 2017 In Proceedings of 2017 IEEE Optical Interconnects Conference Santa Fe, USA, June 5-7, 2017 41

    [13]

    Bowers J E, Liu A Y 2017 In Proceedings of 2017 Optical Fiber Communications Conference Los Angeles, USA, March 19-23, 2017 M2B.4

    [14]

    Komma J, Schwarz C, Hofmann G, Heinert D, Nawrodt R 2012 Appl. Phys. Lett. 101 041905Google Scholar

    [15]

    Masood A, Pantouvaki M, Lepage G, Verheyen P, Campenhout J V, Absil P, Thourhout D V, Bogaerts W 2013 In Proceedings of 2013 International Conference on Group IV Photonics Seoul, South Korea, August 28-30, 2013 ThC2

    [16]

    Soref R, Bennett B 1987 IEEE J. Quantum Electron. 23 123Google Scholar

    [17]

    Nedeljkovic M, Soref R, Mashanovich G Z 2011 IEEE Photonics J. 3 1171Google Scholar

    [18]

    Dupuis N, Lee B G, Rylyakov A V, Kuchta D M, Baks C W, Orcutt J S, Gill D M, Green W M J, Schow C L 2015 J. Lightwave Technol. 33 3597Google Scholar

    [19]

    Xing J, Li Z, Yu Y, Yu J 2013 Opt. Lett. 38 4774Google Scholar

    [20]

    Fang Q, Song J F, Liow T, Cai H, Yu M B, Lo G Q, Kwong D 2011 IEEE Photonics Technol. Lett. 23 525Google Scholar

    [21]

    Dong P, Liao S, Liang H, Shafiiha R, Feng D, Li G, Zheng X, Krishnamoorthy A V, Asghari M 2010 Opt. Express 18 25225Google Scholar

    [22]

    Lu Z, Murray K, Jayatilleka H, Chrostowski L 2015 IEEE Photonics Technol. Lett. 27 2319Google Scholar

    [23]

    Watts M R, Sun J, DeRose C, Trotter D C, Young R W, Nielson G N 2013 Opt. Lett. 38 733Google Scholar

    [24]

    Chen S, Shi Y, He S, Dai D 2016 Opt. Lett. 41 836Google Scholar

    [25]

    Suzuki K, Cong G, Tanizawa K, Kim S H, Ikeda K, Namiki S, Kawashima H 2015 Opt. Express 23 9086Google Scholar

    [26]

    Dupuis N, Rylyakov A V, Schow C L, Kuchta D M, Baks C W, Orcutt J S, Gill D M, Green W M J, Lee B G 2016 Opt. Lett. 41 3002Google Scholar

    [27]

    Celo D, Goodwill D J, Jiang J, Dumais P, Li M, Bernier E 2016 In Proceedings of 2016 Optical Interconnects Conference San Diego, USA, May 9-11, 2016 TuD3

    [28]

    Li Y, Zhang Y, Zhang L, Poon A W 2015 Photonics Res. 3 B10Google Scholar

    [29]

    Vlasov Y, Green W M J, Xia F 2008 Nat. Photonics 2 242Google Scholar

    [30]

    Biberman A, Lira H L R, Padmaraju K, Ophir N, Chan J, Lipson M, Bergman K 2011 IEEE Photonics Technol. Lett. 23 504Google Scholar

    [31]

    Poon A W, Luo X, Xu F, Chen H 2009 Proceedings of the IEEE 97 1216Google Scholar

    [32]

    Luo X, Song J, Feng S, Poon A W, Liow T, Yu M, Lo G, Kwong D 2012 IEEE Photonics Technol. Lett. 24 821Google Scholar

    [33]

    DasMahapatra P, Stabile R, Rohit A, Williams K A 2014 IEEE J. Sel. Top. Quantum Electron. 20 5900410

    [34]

    Lira H L R, Manipatruni S, Lipson M 2009 Opt. Express 17 22271Google Scholar

    [35]

    Lu L, Zhou L, Li X, Chen J 2014 Opt. Lett. 39 1633Google Scholar

    [36]

    Teng J, Dumon P, Bogaerts W, Zhang H, Jian X, Han X, Zhao M, Morthier G, Baets R 2009 Opt. Express 17 14627Google Scholar

    [37]

    Alipour P, Hosseini E S, Eftekhar A A, Momeni B, Adibi A 2010 Opt. Lett. 35 3462Google Scholar

    [38]

    Djordjevic S S, Shang K, Guan B, Cheung S T S, Liao L, Basak J, Liu H F, Yoo S J B 2013 Opt. Express 21 13958Google Scholar

    [39]

    Guha B, Cardenas J, Lipson M 2013 Opt. Express 21 26557Google Scholar

    [40]

    Li Y, Poon A W 2015 Opt. Express 23 360Google Scholar

    [41]

    Khope A S P, Hirokawa T, Netherton A M, Saeidi M, Xia Y, Volet N, Schow C, Helkey R, Theogarajan L, Saleh A A M, Bowers J E, Alferness R C 2017 Opt. Lett. 42 4934Google Scholar

    [42]

    Stern B, Zhu X, Chen C P, Tzuang L D, Cardenas J, Bergman K, Lipson M 2015 Optica 2 530Google Scholar

    [43]

    Dai D 2017 J. Lightwave Technol. 35 572Google Scholar

    [44]

    Yang L, Zhou T, Jia H, Yang S, Ding J, Fu X, Zhang L 2018 Optica 5 180Google Scholar

    [45]

    Seok T J, Quack N, Han S, Muller R S, Wu M C 2016 Optica 3 64Google Scholar

    [46]

    Abe S, Chu M H, Sasaki T, Hane K 2014 IEEE Photonics Technol. Lett. 26 1553Google Scholar

    [47]

    Takahashi K, Kanamori Y, Kokubun Y, Hane K 2008 Opt. Express 16 14421Google Scholar

    [48]

    Briere J, Elsayed M, Saidani M, Bérard M, Beaulieu P O, Rabbani-Haghighi H, Nabki F, Ménard M 2017 Micromachines 8 354Google Scholar

    [49]

    Nakamura S, Takahashi S, Sakauchi M, Hino T, Yu M, Lo G 2011 In Proceedings of 2011 Optical Fiber Communications Conference Los Angeles, USA, March 6−10, 2011 OTuM2

    [50]

    Nakamura S, Yanagimachi S, Takeshita H, Tajima A, Kato T, Hino T, Fukuchi K 2015 In Proceedings of 2015 Optical Fiber Communications Conference Los Angeles, USA, March 22−26, 2015 M2B.6

    [51]

    Chen L, Chen Y K 2012 Opt. Express 20 18977Google Scholar

    [52]

    Dupuis N, Lee B G, Rylyakov A V, Kuchta D M, Baks C W, Orcutt J S, Gill D M, Green W M J, Schow C L 2015 J. Lightwave Technol. 33 4329Google Scholar

    [53]

    Lee B G, Rylyakov A V, Green W M J, Assefa S, Baks C W, Rimolo-Donadio R, Kuchta D M, Khater M H, Barwicz T, Reinholm C, Kiewra E, Shank S M, Schow C L, Vlasov Y A 2014 J. Lightwave Technol. 32 743Google Scholar

    [54]

    Tanizawa K, Suzuki K, Toyama M, Ohtsuka M, Yokoyama N, Matsumaro K, Seki M, Koshino K, Sugaya T, Suda S, Cong G, Kimura T, Ikeda K, Namiki S, Kawashima H 2015 Opt. Express 23 17599Google Scholar

    [55]

    Lu L, Zhao S, Zhou L, Li D, Li Z, Wang M, Li X, Chen J 2016 Opt. Express 24 9295Google Scholar

    [56]

    Qiao L, Tang W, Chu T 2017 Sci. Rep. 7 42306Google Scholar

    [57]

    Qiao L, Tang W, Chu T 2016 In Proceedings of 2016 International Conference on Group IV Photonics Shanghai, China, August 24−26, 2016 WB1

    [58]

    Dumais P, Goodwill D J, Celo D, Jiang J, Zhang C, Zhao F, Tu X, Zhang C, Yan S, He J, Li M, Liu W, Wei Y, Geng D, Mehrvar H, Bernier E 2018 J. Lightwave Technol. 36 233Google Scholar

    [59]

    Goodwill D J, Zhang C, Dumais P, Celo D, Jiang J, Tang X, Zhang Z, Zhao F, Tu X, Yan S, He J, Li M, Liu W, Wei Y, Geng D, Mehrvar H, Bernier E 2017 In Proceedings of 2017 Optical Fiber Communications Conference Los Angeles, USA, March 19−23, 2017 Tu2I.3

    [60]

    Yang L, Jia H, Zhao Y, Chen Q 2015 Opt. Lett. 40 1129Google Scholar

    [61]

    Nikolova D, Calhoun D M, Liu Y, Rumley S, Novack A, Baehr-Jones T, Hochberg M, Bergman K 2017 Microsyst. Nanoeng. 3 16071Google Scholar

    [62]

    Kwon K, Seok T J, Henriksson J, Luo J, Ochikubo L, Jacobs J, Muller R S, Wu M C 2018 In Proceedings of 2018 Conference on Lasers and Electro-Optics San Jose, USA, May 13−18, 2018 SF1A.4

    [63]

    Quack N, Seok T J, Han S, Muller R S, Wu M C 2016 IEEE Photonics Technol. Lett. 28 561Google Scholar

    [64]

    Seok T J, Hwang H Y, Lee J S, Forencich A, Grant H R, Knutson D, Quack N, Han S, Muller R S, Carroll L, Papen G C, Brien P O, Wu M C 2016 In Proceedings of 2016 Photonics Conference Waikoloa, USA October 2−6, 2016 629

    [65]

    Hwang H Y, Lee J S, Seok T J, Forencich A, Grant H R, Knutson D, Quack N, Han S, Muller R S, Papen G C, Wu M C, Brien P O 2017 IEEE Photonics J. 9 1

    [66]

    Han S, Seok T J, Yu K, Quack N, Muller R S, Wu M C 2018 J. Lightwave Technol. 36 1824Google Scholar

    [67]

    Qian Y, Wang D, Fu H, Geng D, Mehrvar H, Goodwill D, Bernier E 2015 In Proceedings of 2015 Optoelectronics and Communications Conference Shanghai, China, June 28—July 2, 2015 WP14

    [68]

    Matsumoto T, Kurahashi T, Konoike R, Tanizawa K, Suzuki K, Uetake A, Takabayashi K, Ikeda K, Kawashima H, Akiyama S, Sekiguchi S 2018 In Proceedings of 2018 Optical Fiber Communications Conference San Diego, USA, March 11−15, 2018 Tu2A.5

    [69]

    Budd R A, Schares L, Lee B G, Doany F E, Baks C, Kuchta D M, Schow C L, Libsch F 2015 In Proceedings of 2015 Electronic Components and Technology Conference San Diego, USA, May 26−29, 2015 1280

    [70]

    White I H, Cheng Q, Wonfor A, Penty R V 2014 In Proceedings of 2014 International Conference on Transparent Optical Networks Graz, Austria, July 6−10, 2014 Mo.D2.1

    [71]

    Dumais P, Wei Y, Li M, Zhao F, Tu X, Jiang J, Celo D, Goodwill D J, Fu H, Geng D, Bernier E 2016 In Proceedings of 2016 Optical Fiber Communications Conference Los Angeles, USA, March 20−24, 2016 W2A.19

    [72]

    Dumais P, Goodwill D J, Celo D, Jiang J, Bernier E 2017 In Proceedings of 2017 International Conference on Group IV Photonics Berlin, Germany, August 23−25, 2017 p97

    [73]

    Sacher W D, Mikkelsen J C, Huang Y, Mak J C C, Yong Z, Luo X, Li Y, Dumais P, Jiang J, Goodwill D, Bernier E, Lo P G, Poon J K S 2018 Proceedings of the IEEE 106 2232Google Scholar

    [74]

    Jiang J, Goodwill D J, Dumais P, Celo D, Zhang C, Li M, Wei Y, Zhao F, Liu W, Tu X, Geng D, Bernier E 2017 IEEE Photonics Technol. Lett. 29 2099Google Scholar

    [75]

    Tu X, Li M, Jiang J, Goodwill D, Dumais P, Bernier E, Fu H, Geng D 2016 In Proceedings of 2016 International Conference on Group IV Photonics Shanghai, China, August 24−26, 2016 ThA5

    [76]

    Bernier E, Dumais P, Goodwill D J, Mehrvar H, Celo D, Jiang J, Zhang C, Zhao F, Tu X, Yan S, He J, Li M, Liu W, Wei Y, Geng D 2018 In Proceedings of 2018 Optical Fiber Communications Conference Los Angeles, USA, March 11-15 2018 Th1J.1

    [77]

    Oda T, Hirakawa K, Ichii K, Yamamoto S, Aikawa K 2017 In Proceedings of 2017 Optical Fiber Communications Conference Los Angeles, USA, March 19−23, 2017 Tu3K.5

    [78]

    Seok T J, Kopp V, Neugroschl D, Henriksson J, Luo J, Wu M C 2017 In Proceedings of 2017 Optical Fiber Communications Conference Los Angeles, USA, March 19-23, 2017 Tu5D.7

    [79]

    Suzuki K, Konoike R, Hasegawa J, Suda S, Matsuura H, Ikeda K, Namiki S, Kawashima H 2018 In Proceedings of 2018 Optical Fiber Communications Conference San Diego, USA, March 11−15, 2018 Th4B.5

    [80]

    Bernier E, Dumais P, Goodwill D J, Mehrvar H, Celo D, Jiang J, Zhang C, Zhao F, Tu X, Yan S, He J, Li M, Liu W, Wei Y, Geng D 2018 In Proceedings of 2018 Optical Fiber Communications Conference San Diego, USA, March 11—15, 2018 ThJ1.1

    [81]

    Yang Y, Yu M, Fang Q, Song J, Tu X, Lo P G-Q, Rusli 2016 In Proceedings of 2016 Electronic Components and Technology Conference Las Vegas, USA, May 31—June 3, 2016 483

    [82]

    Kurosu T, Inoue T, Suzuki K, Suda S, Namiki S 2019 IEEE J. Lightwave Technol. 37 131Google Scholar

    [83]

    Velha P, Sorianello V, Preite M V, De Angelis G, Cassese T, Bianchi A, Testa F, Romagnoli M 2016 Opt. Lett. 41 5656Google Scholar

    [84]

    Tanizawa K, Suzuki K, Ikeda K, Namiki S, Kawashima H 2016 Opt. Express 24 6861Google Scholar

  • 图 1  (a) MZI型2 × 2光开关单元结构示意图. 硅基波导开关相移器的横截面图(b) 金属薄膜热电极热光相移器; (c)掺杂波导热光相移器; (d) 空气隔离层的热光相移器; (e) 注入载流子型电光相移器

    Figure 1.  (a) Schematic of 2 × 2 MZI switch cell. Cross-sections of waveguide phase shifters: (b) Thermo-optic phase shifter using a metal heater; (c) thermo-optic phase shifter using a doped resistive heater; (d) suspended thermo-optic phase shifter using a metal heater (e) carrier injection phase shifter

    图 2  (a) MZI型光开关单元结构图示意图; (b) 波长开关路径

    Figure 2.  (a) Schematic of a MRR switch cell; (b) switching paths

    图 3  (a) Hybrid Dilated Benes架构的拓扑结构[67]; (b)开关单元的波长受限路由规则

    Figure 3.  (a) Topology of 16 × 16 Hybrid Dilated Benes[67]; (b) wavelength constrained routing rules of the switch cell

    图 4  几种不同拓扑架构的开关矩阵的(a)总开关单元数和(b)开关级数

    Figure 4.  Switch matrix of different topologies (a) total number of switch cells and (b) total number of matrix stages

    图 5  无源器件 (a)平面交叉波导[72]; (b)立体交叉波导[73]; (c)转接波导[74]; (d)弯曲波导[75]

    Figure 5.  Passive components: (a) In-plane waveguide crossing[72]; (b) 3D waveguide crossing[73]; (c) transition waveguide[74]; (d) bend waveguide[75]

    表 1  业界MZI型硅基波导光开关的代表成果

    Table 1.  Comparison table of MZI optical waveguide switch cells

    参考文献 年份 研究机构 相移器类型 相移器长/μm 开关时间 功耗/mW 损耗/dB 串扰/dB
    [18] 2015 IBM 电光PIN 250 4 ns 1 1 –23
    [19] 2013 CAS 电光PIN 400 –31
    [20] 2011 IME 热光TiN 1000 144 μs 0.49 0.3 –23
    [21] 2010 Kotura 电光PIN 4000 6 ns 0.6 3.2 –16
    [22] 2015 UBC 热光TiN 4270 780 μs 0.05 3.3 –26
    [23] 2013 MIT 热光掺杂硅 ~10 2.4 μs 12.7 0.5 –20
    [24] 2016 ZJU 热光TiN 20 –20
    [25] 2014 AIST 热光TiN ~150 10 μs 30 0.5 –50
    [26] 2016 IBM 电光PIN 250 4 ns 2 –34.5
    [27] 2016 Huawei 热光TiN 250 1340/70 μs 0.5/10 0.5 –22
    DownLoad: CSV

    表 2  业界MRR型开关的代表成果

    Table 2.  Comparison table of MRR optical waveguide switch cells

    参考文献 年份 研究机构 损耗/dB 串扰/dB 功耗/mW 开关时间 带宽/nm
    [30] 2011 Columbia U —— –12 —— 2.78 ns 0.56
    [31] 2009 HKUST 1.64 –11 ~0.1 1.3 ns 0.45
    [32] 2012 IME 4.3 –10 37 1 ns 0.8
    [33] 2014 TU/e 2 –20 120 17 μs 0.8
    [34] 2009 Cornell U 2 –9.8 17.4 7 ns 0.48
    [35] 2014 SJTU 3.4 –20 0.69(电光) 2.3(热光) 414 ps 0.48
    DownLoad: CSV

    表 3  业界MEMS驱动波导型开关的代表成果

    Table 3.  Comparison table of MEMS optical waveguide switch cells

    研究机构 UC Berkeley[45] Tohoku U[46] Tohoku U[47] Aeponyx Inc[48]
    驱动电压/V 42 26 28.2 118
    开关时间/μs 0.91 18 —— 300
    插入损耗/dB 0.47 1 2.6 14.8
    带宽/nm 300 —— 0.5 宽带
    串扰/dB –60 –17 –32.9 –40
    DownLoad: CSV

    表 4  不同的光开关引擎在保持开状态时的功耗

    Table 4.  Comparison table of the power consumption of the switch engines at ON state

    开关种类 MZI型 MRR型 MEM驱动波导型
    电光 热光 电光 热光 垂直耦合 平面耦合 端面耦合
    保持开状态的功耗/mW 0.6–1 0.05–30 0.7–37 17.4–120 0 0 0
    文献 [18, 21, 26] [22, 23, 25, 27] [32, 35] [33, 34] [45] [46, 47] [48]
    DownLoad: CSV
  • [1]

    Basch E B, Egorov R, Gringeri S, Elby S 2006 IEEE J. Sel. Top. Quantum Electron. 12 615Google Scholar

    [2]

    Jensen R, Lord A, Parsons N 2010 In Proceedings of 2010 European Conference on Optical Communication Turino, Italy, September 19−23, 2010 Mo.2.D.2

    [3]

    Colbourne P D, Collings B 2011 In Proceedings of 2011 Optical Fiber Communications Conference , Los Angeles, USA, March 6-10, 2011 OTuD1

    [4]

    Farrington N P G, Radhakrishnan S, Bazzaz H H, Subramanya V, Fainman Y, Papen G, Vahdat A 2011 ACM SIGCOMM Computer Communication Review 41 339

    [5]

    Alan Benner D M K, Pepeljugoski P K, Budd R A, Hougham G, Fasano B V, Marston K, Bagheri H, Seminaro E J, Xu H, Meadowcroft D, Fields M H, McColloch L, Robinson M, Miller F W, Kaneshiro R, Granger R, Childers D, Childers E 2010 In Proceedings of 2010 Optical Fiber Communications Conference San Diego, USA, March 21-25, 2010 OTuH1

    [6]

    Schares L, Lee B G, Checconi F, Budd R, Rylyakov A, Dupuis N, Petrini F, Schow C L, Fuentes P, Mattes O, Minkenberg C 2014 IEEE Micro. 34 52Google Scholar

    [7]

    Wu M C, Solgaard O, Ford J E 2006 J. Lightwave Technol. 24 4433Google Scholar

    [8]

    Frisken S, Baxter G, Abakoumov D, Hao Z, Clarke I, Poole S 2011 In Proceedings of 2011 Optical Fiber Communications Conference Los Angeles, USA, March 6-10, 2011 OTuM3

    [9]

    Chiba A, Kawanishi T, Sakamoto T, Higuma K, Izutsu M 2007 In Proceedings of 2007 Conference on Photonics in Switching San Francisco, USA, August 19-22, 2007 TuB1.4

    [10]

    Tanaka S, Jeong S, Yamazaki S, Uetake A, Tomabechi S, Ekawa M, Morito K 2009 IEEE J. Sel. Top. Quantum Electron. 45 1155Google Scholar

    [11]

    Earnshaw M P, Soole J B D, Cappuzzo M, Gomez L, Laskowski E, Paunescu A 2003 IEEE Photonics Technol. Lett. 15 810Google Scholar

    [12]

    Cheng Q, Bahadori M, Rumley S, Bergman K 2017 In Proceedings of 2017 IEEE Optical Interconnects Conference Santa Fe, USA, June 5-7, 2017 41

    [13]

    Bowers J E, Liu A Y 2017 In Proceedings of 2017 Optical Fiber Communications Conference Los Angeles, USA, March 19-23, 2017 M2B.4

    [14]

    Komma J, Schwarz C, Hofmann G, Heinert D, Nawrodt R 2012 Appl. Phys. Lett. 101 041905Google Scholar

    [15]

    Masood A, Pantouvaki M, Lepage G, Verheyen P, Campenhout J V, Absil P, Thourhout D V, Bogaerts W 2013 In Proceedings of 2013 International Conference on Group IV Photonics Seoul, South Korea, August 28-30, 2013 ThC2

    [16]

    Soref R, Bennett B 1987 IEEE J. Quantum Electron. 23 123Google Scholar

    [17]

    Nedeljkovic M, Soref R, Mashanovich G Z 2011 IEEE Photonics J. 3 1171Google Scholar

    [18]

    Dupuis N, Lee B G, Rylyakov A V, Kuchta D M, Baks C W, Orcutt J S, Gill D M, Green W M J, Schow C L 2015 J. Lightwave Technol. 33 3597Google Scholar

    [19]

    Xing J, Li Z, Yu Y, Yu J 2013 Opt. Lett. 38 4774Google Scholar

    [20]

    Fang Q, Song J F, Liow T, Cai H, Yu M B, Lo G Q, Kwong D 2011 IEEE Photonics Technol. Lett. 23 525Google Scholar

    [21]

    Dong P, Liao S, Liang H, Shafiiha R, Feng D, Li G, Zheng X, Krishnamoorthy A V, Asghari M 2010 Opt. Express 18 25225Google Scholar

    [22]

    Lu Z, Murray K, Jayatilleka H, Chrostowski L 2015 IEEE Photonics Technol. Lett. 27 2319Google Scholar

    [23]

    Watts M R, Sun J, DeRose C, Trotter D C, Young R W, Nielson G N 2013 Opt. Lett. 38 733Google Scholar

    [24]

    Chen S, Shi Y, He S, Dai D 2016 Opt. Lett. 41 836Google Scholar

    [25]

    Suzuki K, Cong G, Tanizawa K, Kim S H, Ikeda K, Namiki S, Kawashima H 2015 Opt. Express 23 9086Google Scholar

    [26]

    Dupuis N, Rylyakov A V, Schow C L, Kuchta D M, Baks C W, Orcutt J S, Gill D M, Green W M J, Lee B G 2016 Opt. Lett. 41 3002Google Scholar

    [27]

    Celo D, Goodwill D J, Jiang J, Dumais P, Li M, Bernier E 2016 In Proceedings of 2016 Optical Interconnects Conference San Diego, USA, May 9-11, 2016 TuD3

    [28]

    Li Y, Zhang Y, Zhang L, Poon A W 2015 Photonics Res. 3 B10Google Scholar

    [29]

    Vlasov Y, Green W M J, Xia F 2008 Nat. Photonics 2 242Google Scholar

    [30]

    Biberman A, Lira H L R, Padmaraju K, Ophir N, Chan J, Lipson M, Bergman K 2011 IEEE Photonics Technol. Lett. 23 504Google Scholar

    [31]

    Poon A W, Luo X, Xu F, Chen H 2009 Proceedings of the IEEE 97 1216Google Scholar

    [32]

    Luo X, Song J, Feng S, Poon A W, Liow T, Yu M, Lo G, Kwong D 2012 IEEE Photonics Technol. Lett. 24 821Google Scholar

    [33]

    DasMahapatra P, Stabile R, Rohit A, Williams K A 2014 IEEE J. Sel. Top. Quantum Electron. 20 5900410

    [34]

    Lira H L R, Manipatruni S, Lipson M 2009 Opt. Express 17 22271Google Scholar

    [35]

    Lu L, Zhou L, Li X, Chen J 2014 Opt. Lett. 39 1633Google Scholar

    [36]

    Teng J, Dumon P, Bogaerts W, Zhang H, Jian X, Han X, Zhao M, Morthier G, Baets R 2009 Opt. Express 17 14627Google Scholar

    [37]

    Alipour P, Hosseini E S, Eftekhar A A, Momeni B, Adibi A 2010 Opt. Lett. 35 3462Google Scholar

    [38]

    Djordjevic S S, Shang K, Guan B, Cheung S T S, Liao L, Basak J, Liu H F, Yoo S J B 2013 Opt. Express 21 13958Google Scholar

    [39]

    Guha B, Cardenas J, Lipson M 2013 Opt. Express 21 26557Google Scholar

    [40]

    Li Y, Poon A W 2015 Opt. Express 23 360Google Scholar

    [41]

    Khope A S P, Hirokawa T, Netherton A M, Saeidi M, Xia Y, Volet N, Schow C, Helkey R, Theogarajan L, Saleh A A M, Bowers J E, Alferness R C 2017 Opt. Lett. 42 4934Google Scholar

    [42]

    Stern B, Zhu X, Chen C P, Tzuang L D, Cardenas J, Bergman K, Lipson M 2015 Optica 2 530Google Scholar

    [43]

    Dai D 2017 J. Lightwave Technol. 35 572Google Scholar

    [44]

    Yang L, Zhou T, Jia H, Yang S, Ding J, Fu X, Zhang L 2018 Optica 5 180Google Scholar

    [45]

    Seok T J, Quack N, Han S, Muller R S, Wu M C 2016 Optica 3 64Google Scholar

    [46]

    Abe S, Chu M H, Sasaki T, Hane K 2014 IEEE Photonics Technol. Lett. 26 1553Google Scholar

    [47]

    Takahashi K, Kanamori Y, Kokubun Y, Hane K 2008 Opt. Express 16 14421Google Scholar

    [48]

    Briere J, Elsayed M, Saidani M, Bérard M, Beaulieu P O, Rabbani-Haghighi H, Nabki F, Ménard M 2017 Micromachines 8 354Google Scholar

    [49]

    Nakamura S, Takahashi S, Sakauchi M, Hino T, Yu M, Lo G 2011 In Proceedings of 2011 Optical Fiber Communications Conference Los Angeles, USA, March 6−10, 2011 OTuM2

    [50]

    Nakamura S, Yanagimachi S, Takeshita H, Tajima A, Kato T, Hino T, Fukuchi K 2015 In Proceedings of 2015 Optical Fiber Communications Conference Los Angeles, USA, March 22−26, 2015 M2B.6

    [51]

    Chen L, Chen Y K 2012 Opt. Express 20 18977Google Scholar

    [52]

    Dupuis N, Lee B G, Rylyakov A V, Kuchta D M, Baks C W, Orcutt J S, Gill D M, Green W M J, Schow C L 2015 J. Lightwave Technol. 33 4329Google Scholar

    [53]

    Lee B G, Rylyakov A V, Green W M J, Assefa S, Baks C W, Rimolo-Donadio R, Kuchta D M, Khater M H, Barwicz T, Reinholm C, Kiewra E, Shank S M, Schow C L, Vlasov Y A 2014 J. Lightwave Technol. 32 743Google Scholar

    [54]

    Tanizawa K, Suzuki K, Toyama M, Ohtsuka M, Yokoyama N, Matsumaro K, Seki M, Koshino K, Sugaya T, Suda S, Cong G, Kimura T, Ikeda K, Namiki S, Kawashima H 2015 Opt. Express 23 17599Google Scholar

    [55]

    Lu L, Zhao S, Zhou L, Li D, Li Z, Wang M, Li X, Chen J 2016 Opt. Express 24 9295Google Scholar

    [56]

    Qiao L, Tang W, Chu T 2017 Sci. Rep. 7 42306Google Scholar

    [57]

    Qiao L, Tang W, Chu T 2016 In Proceedings of 2016 International Conference on Group IV Photonics Shanghai, China, August 24−26, 2016 WB1

    [58]

    Dumais P, Goodwill D J, Celo D, Jiang J, Zhang C, Zhao F, Tu X, Zhang C, Yan S, He J, Li M, Liu W, Wei Y, Geng D, Mehrvar H, Bernier E 2018 J. Lightwave Technol. 36 233Google Scholar

    [59]

    Goodwill D J, Zhang C, Dumais P, Celo D, Jiang J, Tang X, Zhang Z, Zhao F, Tu X, Yan S, He J, Li M, Liu W, Wei Y, Geng D, Mehrvar H, Bernier E 2017 In Proceedings of 2017 Optical Fiber Communications Conference Los Angeles, USA, March 19−23, 2017 Tu2I.3

    [60]

    Yang L, Jia H, Zhao Y, Chen Q 2015 Opt. Lett. 40 1129Google Scholar

    [61]

    Nikolova D, Calhoun D M, Liu Y, Rumley S, Novack A, Baehr-Jones T, Hochberg M, Bergman K 2017 Microsyst. Nanoeng. 3 16071Google Scholar

    [62]

    Kwon K, Seok T J, Henriksson J, Luo J, Ochikubo L, Jacobs J, Muller R S, Wu M C 2018 In Proceedings of 2018 Conference on Lasers and Electro-Optics San Jose, USA, May 13−18, 2018 SF1A.4

    [63]

    Quack N, Seok T J, Han S, Muller R S, Wu M C 2016 IEEE Photonics Technol. Lett. 28 561Google Scholar

    [64]

    Seok T J, Hwang H Y, Lee J S, Forencich A, Grant H R, Knutson D, Quack N, Han S, Muller R S, Carroll L, Papen G C, Brien P O, Wu M C 2016 In Proceedings of 2016 Photonics Conference Waikoloa, USA October 2−6, 2016 629

    [65]

    Hwang H Y, Lee J S, Seok T J, Forencich A, Grant H R, Knutson D, Quack N, Han S, Muller R S, Papen G C, Wu M C, Brien P O 2017 IEEE Photonics J. 9 1

    [66]

    Han S, Seok T J, Yu K, Quack N, Muller R S, Wu M C 2018 J. Lightwave Technol. 36 1824Google Scholar

    [67]

    Qian Y, Wang D, Fu H, Geng D, Mehrvar H, Goodwill D, Bernier E 2015 In Proceedings of 2015 Optoelectronics and Communications Conference Shanghai, China, June 28—July 2, 2015 WP14

    [68]

    Matsumoto T, Kurahashi T, Konoike R, Tanizawa K, Suzuki K, Uetake A, Takabayashi K, Ikeda K, Kawashima H, Akiyama S, Sekiguchi S 2018 In Proceedings of 2018 Optical Fiber Communications Conference San Diego, USA, March 11−15, 2018 Tu2A.5

    [69]

    Budd R A, Schares L, Lee B G, Doany F E, Baks C, Kuchta D M, Schow C L, Libsch F 2015 In Proceedings of 2015 Electronic Components and Technology Conference San Diego, USA, May 26−29, 2015 1280

    [70]

    White I H, Cheng Q, Wonfor A, Penty R V 2014 In Proceedings of 2014 International Conference on Transparent Optical Networks Graz, Austria, July 6−10, 2014 Mo.D2.1

    [71]

    Dumais P, Wei Y, Li M, Zhao F, Tu X, Jiang J, Celo D, Goodwill D J, Fu H, Geng D, Bernier E 2016 In Proceedings of 2016 Optical Fiber Communications Conference Los Angeles, USA, March 20−24, 2016 W2A.19

    [72]

    Dumais P, Goodwill D J, Celo D, Jiang J, Bernier E 2017 In Proceedings of 2017 International Conference on Group IV Photonics Berlin, Germany, August 23−25, 2017 p97

    [73]

    Sacher W D, Mikkelsen J C, Huang Y, Mak J C C, Yong Z, Luo X, Li Y, Dumais P, Jiang J, Goodwill D, Bernier E, Lo P G, Poon J K S 2018 Proceedings of the IEEE 106 2232Google Scholar

    [74]

    Jiang J, Goodwill D J, Dumais P, Celo D, Zhang C, Li M, Wei Y, Zhao F, Liu W, Tu X, Geng D, Bernier E 2017 IEEE Photonics Technol. Lett. 29 2099Google Scholar

    [75]

    Tu X, Li M, Jiang J, Goodwill D, Dumais P, Bernier E, Fu H, Geng D 2016 In Proceedings of 2016 International Conference on Group IV Photonics Shanghai, China, August 24−26, 2016 ThA5

    [76]

    Bernier E, Dumais P, Goodwill D J, Mehrvar H, Celo D, Jiang J, Zhang C, Zhao F, Tu X, Yan S, He J, Li M, Liu W, Wei Y, Geng D 2018 In Proceedings of 2018 Optical Fiber Communications Conference Los Angeles, USA, March 11-15 2018 Th1J.1

    [77]

    Oda T, Hirakawa K, Ichii K, Yamamoto S, Aikawa K 2017 In Proceedings of 2017 Optical Fiber Communications Conference Los Angeles, USA, March 19−23, 2017 Tu3K.5

    [78]

    Seok T J, Kopp V, Neugroschl D, Henriksson J, Luo J, Wu M C 2017 In Proceedings of 2017 Optical Fiber Communications Conference Los Angeles, USA, March 19-23, 2017 Tu5D.7

    [79]

    Suzuki K, Konoike R, Hasegawa J, Suda S, Matsuura H, Ikeda K, Namiki S, Kawashima H 2018 In Proceedings of 2018 Optical Fiber Communications Conference San Diego, USA, March 11−15, 2018 Th4B.5

    [80]

    Bernier E, Dumais P, Goodwill D J, Mehrvar H, Celo D, Jiang J, Zhang C, Zhao F, Tu X, Yan S, He J, Li M, Liu W, Wei Y, Geng D 2018 In Proceedings of 2018 Optical Fiber Communications Conference San Diego, USA, March 11—15, 2018 ThJ1.1

    [81]

    Yang Y, Yu M, Fang Q, Song J, Tu X, Lo P G-Q, Rusli 2016 In Proceedings of 2016 Electronic Components and Technology Conference Las Vegas, USA, May 31—June 3, 2016 483

    [82]

    Kurosu T, Inoue T, Suzuki K, Suda S, Namiki S 2019 IEEE J. Lightwave Technol. 37 131Google Scholar

    [83]

    Velha P, Sorianello V, Preite M V, De Angelis G, Cassese T, Bianchi A, Testa F, Romagnoli M 2016 Opt. Lett. 41 5656Google Scholar

    [84]

    Tanizawa K, Suzuki K, Ikeda K, Namiki S, Kawashima H 2016 Opt. Express 24 6861Google Scholar

  • [1] Liu Ning, Liu Ken, Zhu Zhi-Hong. Research progress of nonlinear optical properties of integrated two-dimensional materials. Acta Physica Sinica, 2023, 72(17): 174202. doi: 10.7498/aps.72.20230729
    [2] Lu Li-Dan, Zhu Lian-Qing, Zeng Zhou-Mo, Cui Yi-Ping, Zhang Dong-Liang, Yuan Pei. Progress of silicon photonic devices-based Fano resonance. Acta Physica Sinica, 2021, 70(3): 034204. doi: 10.7498/aps.70.20200550
    [3] Zhang Ning, Xu Kai-Kai, Chen Yan-Xu, Zhu Kun-Feng, Zhao Jian-Ming, Yu Qi. Application prospect of metal-oxide-semiconductor silicon light emitting devices in integrated circuits. Acta Physica Sinica, 2019, 68(16): 167803. doi: 10.7498/aps.68.20191004
    [4] Xiao Jin-Biao, Wang Deng-Feng. Full-vectorial analysis of a silicon-based multimode interference mode-order converter for slot waveguide nanowires. Acta Physica Sinica, 2017, 66(7): 074203. doi: 10.7498/aps.66.074203
    [5] Xiao Jin-Biao, Luo Hui, Xu Yin, Sun Xiao-Han. Full-vectorial analysis of a polarization demultiplexer using a microring resonator with silicon-based slot waveguides. Acta Physica Sinica, 2015, 64(19): 194207. doi: 10.7498/aps.64.194207
    [6] Lin Jian-Xiao, Wu Jiu-Hui, Liu Ai-Qun, Chen Zhe, Lei Hao. A nano-silicon-photonic switch driven by an optical gradient force. Acta Physica Sinica, 2015, 64(15): 154209. doi: 10.7498/aps.64.154209
    [7] Zhang Xin, Li Zhi-Quan, Tong Kai. A cross bus single microring electro-optical switch with U bend waveguide. Acta Physica Sinica, 2014, 63(9): 094207. doi: 10.7498/aps.63.094207
    [8] Zhou Pei-Ji, Li Zhi-Yong, Yu Yu-De, Yu Jin-Zhong. Research progress of silicon-based photonic integration. Acta Physica Sinica, 2014, 63(10): 104218. doi: 10.7498/aps.63.104218
    [9] Yang Biao, Li Zhi-Yong, Xiao Xi, Nemkova Anastasia, Yu Jin-Zhong, Yu Yu-De. The progress of silicon-based grating couplers. Acta Physica Sinica, 2013, 62(18): 184214. doi: 10.7498/aps.62.184214
    [10] Qi Xin-Yuan, Cao Zheng, Bai Jin-Tao. The beam propagation based on one-dimensional separation modulated photonic lattices. Acta Physica Sinica, 2013, 62(6): 064217. doi: 10.7498/aps.62.064217
    [11] Wu Fang-Fang, Shen Yi-Feng, Wang Yong-Chun, Han Kui, Zhou Jie, Zhang Yuan, Chen Qiong. A compact and tunable photonic crystal switch based on defect resonance. Acta Physica Sinica, 2011, 60(1): 017801. doi: 10.7498/aps.60.017801
    [12] Zhou Jun, Ren Hai-Dong, Feng Ya-Ping. The pulsating propagation of spatial soliton in strongly nonlocal optical lattice. Acta Physica Sinica, 2010, 59(6): 3992-4000. doi: 10.7498/aps.59.3992
    [13] Xu Da-Wei, Liang Zhong-Zhu, Liang Jing-Qiu, Li Wei, Li Xiao-Qi, Sun Zhi-Dan, Wang Wei-Biao. Simulation and fabrication of flexible cantilever electromagnet actuated optical switch. Acta Physica Sinica, 2010, 59(4): 2479-2484. doi: 10.7498/aps.59.2479
    [14] Qin Xiao-Juan, Shao Yi-Quan, Guo Qi. Steering of optical beams in strongly nonlocal nonlinear media by spatial phase modulation. Acta Physica Sinica, 2007, 56(9): 5269-5275. doi: 10.7498/aps.56.5269
    [15] Miao Qing-Yuan, Huang De-Xiu, Zhang Xin-Liang, Yu Yong-Lin, Hong Wei. Theoretical study of wavelength conversion based on integrated twin-guide semiconductor optical amplifier optical switch. Acta Physica Sinica, 2007, 56(2): 902-907. doi: 10.7498/aps.56.902
    [16] Shao Yi-Quan, Guo Qi. Propagation of phase modulated Gaussian beam in strongly nonlocal nonlinear media. Acta Physica Sinica, 2006, 55(6): 2751-2759. doi: 10.7498/aps.55.2751
    [17] Wang Hong-Cheng, Wang Xiao-Sheng, She Wei-Long, Ren Guo-Bin, Wang Zhi, Lou Shu-Qin, Jian Shui-Sheng. Effect of spatial phase modulation on propagation of photovoltaic spatial solitons. Acta Physica Sinica, 2004, 53(8): 2595-2599. doi: 10.7498/aps.53.2595
    [18] Li Shi-Chen, Xue Ting, Yu Jian. . Acta Physica Sinica, 2002, 51(9): 2018-2021. doi: 10.7498/aps.51.2018
    [19] Xue Ting, Yu Jian, Yang Tian-Xin, Ni Wen-Jun, Li Shen-Chen. . Acta Physica Sinica, 2002, 51(7): 1521-1529. doi: 10.7498/aps.51.1521
    [20] YU ZHONG-YUAN, ZHANG XIAO-GUANG, LIU XIU-MIN. SHORT OPTICAL PULSE SWITCHING IN THREE-CORE NONLINEAR FIBER COUPLERS. Acta Physica Sinica, 2001, 50(5): 904-909. doi: 10.7498/aps.50.904
Metrics
  • Abstract views:  21378
  • PDF Downloads:  910
  • Cited By: 0
Publishing process
  • Received Date:  03 January 2019
  • Accepted Date:  11 April 2019
  • Available Online:  01 May 2019
  • Published Online:  20 May 2019

/

返回文章
返回