-
The optical gyroscope for measuring the attitude information of spatial carriers, has emerged as a research hotspot in inertial navigation system. Real-time measurement of rotation angular velocity is crucial for obtaining accurate attitude information. However, the measurement accuracy of traditional optical gyroscope is limited by the short noise limit (SNL), which restricts its further applications. Existing research indicates that the quantum technology is needed to address the measurement limitations of traditional optical gyroscopes. A triaxial rotation angular velocity measurement scheme based on frequency entangled biphoton and cascaded Hong-Ou-Mandel (HOM) interference is proposed in this study. By using the Sagnac effect induced by the rotation between signal and idler photons, the triaxial angular velocity is introduced into the corresponding measurement arm of a cascaded HOM interferometer. The cascaded HOM interferogram is obtained using a coincidence measurement device, and the relationship between the symmetric dip position and the three independent time delay difference is analyzed. The characteristic parameters of HOM interferogram, including a half-height full width (FWHM) of 0.3 ps and visibilities of 1, 0.25 and 0.06, respectively, are obtained. According to quantum Fisher information theory, the maximum quantum Fisher information values of the three independent time delay differences ($ {\tau }_{1} $, $ {\tau }_{2} $, $ {\tau }_{3} $) are calculated to be 1, 0.1, and 0.006, respectively. Furthermore, by incorporating measurement uncertainty, it is demonstrated that the accuracy of the time delay measurement can exceed the SNL. Combined with the relationship between time delay and angular velocity, the results show that the angular velocity measurement accuracy exceeds that of classical optical gyroscopes. Therefore, this scheme provides a theoretical foundation for further applying quantum gyroscopes to global navigation sensing and precision measurement systems.
-
-
[1] Toland J R E, Search C P 2013 Appl. Phys. B 114 333
[2] Aghaie K Z, Digonnet M J F 2015 J. Opt. Soc. Am. B 32 339
Google Scholar
[3] 陈坤, 陈树新, 吴德伟, 杨春燕, 吴昊 2016 物理学报 65 054203
Google Scholar
Chen K, Chen S X, Wu D W, Yang C Y, Wu H 2016 Acta Phys. Sin. 65 054203
Google Scholar
[4] Lefèvre H C 2014 C. R. Physique 15 851
Google Scholar
[5] Sultana J 2014 Gen. Relat. Gravti. 46 1710
Google Scholar
[6] Courtney T L, Park S D, Hill R J, Cho B, Jonas D M 2014 Opt. Lett. 39 513
Google Scholar
[7] Giovannetti V, Lloyd S, Maccone L 2001 Nature 412 417
Google Scholar
[8] Dowling J P 2008 Contemp. Phys. 49 125
Google Scholar
[9] Kura N, Ueda M 2020 Phys. Rev. Lett. 124 010507
[10] Fink M, Rodriguez-Aramendia A, Handsteiner J, Ziarkash A, Steinlechner F, Scheidl T, Fuentes I, Pienaar J, Ralph T C, Ursin R 2016 Nat. Commun. 8 15304
[11] Kevin A, O'Donnell 2011 Phys. Rev. Lett. 106 063601
Google Scholar
[12] Baek S Y, Cho Y W, Kim Y H 2009 Opt. Express 17 19241
[13] Kolkiran A, Agarwal G S 2007 Opt. Express 15 6798
[14] Fink M, Steinlechner F, Handsteiner J, Dowling J P, Scheidl T, Ursin R 2019 New J. Phys. 21 053010
Google Scholar
[15] Silvestri R, Yu H C, Stromeberg T, Hilweg C, Peterson R W, Walther P 2024 Sci. Adv. 10 0215
[16] Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge University Press) pp271–290
[17] Lyons A, Knee G C, Bolduc E, Thomas R, Leach J, Gauger E M, Faccio D 2018 Sci. Adv. 4 9416
Google Scholar
[18] Chen Y Y, Fink M, Steinlechner F, Torres J P, Ursin R 2019 npj Quantum Inform. 5 43
Google Scholar
[19] Valencia A, Scarcelli G, Shih Y H 2004 Appl. Phys. Lett. 85 2655
[20] 徐耀坤, 孙仕海, 曾瑶源, 杨俊刚, 盛卫东, 刘伟涛 2023 物理学报 72 214207
Google Scholar
Xu Y K, Sun S H, Zeng Y Y, Yang J G, Sheng W D, Liu W T 2023 Acta Phys. Sin. 72 214207
Google Scholar
[21] 罗一振, 马洛嘉, 孙铭烁, 吴思睿, 邱丽华, 王禾, 王琴 2024 物理学报 73 240302
Google Scholar
Luo Y Z, Ma L J, Sun M S, Wu S R, Qiu L H, Wang H, Wang Q 2024 Acta Phys. Sin. 73 240302
Google Scholar
[22] Liu R, Kong L J, Wang Z X, Si Y, Qi W R, Huang S Y, Tu C H, Li Y N, Wang H T 2018 Chin. Phys. Lett. 35 090303
[23] Ma L J, Sun M S, Zhang C H, Ding H J, Zhou X Y, Li J, Wang Q 2025 Chin. Phys. B 34 010301
[24] Gao W L, Xu L P, Zhang H, Yan B, Li P X, Hu G T 2023 Chin. Phys. B 32 050304
[25] Yang Y, Xu L P, Giovannetti V 2019 Phys. Rev. A 100 063810
[26] Post E J 1967 Rev. Mod. Phys. 39 475
[27] 翟艺伟, 董瑞芳, 权润爱, 项晓, 刘涛, 张首刚 2021 物理学报 70 120302
Google Scholar
Zhai Y W, Dong R F, Quan R A, Xiang X, Liu T, Zhang S G 2021 Acta Phys. Sin. 70 120302
Google Scholar
[28] Braunstein S L, Caves C M 1994 Phys. Rev. Lett. 72 3439
Google Scholar
[29] 任志红, 李岩, 李艳娜, 李卫东 2019 物理学报 68 040601
Google Scholar
Ren Z H, Li Y, Li Y N, Li W D 2019 Acta Phys. Sin. 68 040601
Google Scholar
[30] Zwierz M, Pérez-Delgado C A, Kok P 2010 Phys. Rev. Lett. 105 180402
Google Scholar
[31] Giovannetti V, Lloyd S, Maccone L, 2006 Phys. Rev. Lett. 96 010401
Google Scholar
[32] Guo Y, Yang Z X, Zeng Z Q, Ding C L, Shimizu R, Jin R B 2023 Opt. Express 31 32849
Google Scholar
[33] Kok P, Dunningham J, Ralph J F 2017 Phys. Rev. A 95 012326
Google Scholar
Metrics
- Abstract views: 468
- PDF Downloads: 19
- Cited By: 0