-
Cirrus clouds play an important role in the energy budget and the hydrological cycle of the atmosphere. It is still one of the largest uncertainties in the global climate change studies. This is mainly attributable to the measurement discrepancies of cirrus parameters, especially the microphysical parameters, which are constrained by the existing methods. With THz wavelengths on the order of the size of typical cirrus cloud particles and therefore being sensitive to cirrus clouds, THz region is expected to have a promising prospect concerning measuring cirrus microphysical parameters (ice water path and effective particle size). In order to evaluate the effects of cirrus microphysical parameters on THz transmission characteristics and the sensitivity of cirrus in THz region, the THz radiation spectra at the top of atmosphere in the clear sky and the cloudy situations are simulated and calculated based on the atmospheric radiative transfer simulator. The effects of cirrus particle shape, particle size and ice water path on THz transmission characteristics are obtained by analyzing the brightness temperature difference between the two situations, and the sensitivity parameters that quantitatively describ the effects. The results indicate that cirrus particle shape, particle size and ice water path have different effects on the THz wave propagation. The cirrus effect varies also with channel frequency. Overall, in the low frequency channels, cirrus effects are enhanced with the increases of particle size and ice water path; in the high frequency channels, cirrus effects are more complicated and vary with particle size and ice water path. The effects are first enhanced and then turned into saturation. The THz wave is sensitive to cirrus cloud ice water path and effective particle size, and THz wave may be the best waveband for remote sensing of cirrus microphysical parameters in theory. For thin clouds, the sensitivity parameters are approximately constant, indicating that the spectral brightness temperature at the top of the atmosphere almost shows linear relationship with ice water path, and the sensitivity parameters increase with frequency increasing. For thick clouds, the sensitivity of cirrus to ice water path decreases and gradually becomes saturated, and the higher the frequency, the more quickly it tends to saturation level. Compared with the microwave and infrared, THz wave can provide many detailed information about cirrus. The two-channel look-up table indicates that THz wave passive remote sensing of cirrus may be a stable and effective method. The results will be conducible to developing the technology of THz wave remote sensing of cirrus microphysical parameters. Moreover, it is also beneficial to improving the cirrus detection precision.
-
Keywords:
- terahertz radiation /
- cirrus clouds /
- microphysical parameters /
- sensitivity analysis
[1] Rossow W B, Schiffer R A 1991 Bull. Amer. Meteor. Soc. 72 2
[2] Parry M L, Canziani O F, Palutikof J P, van der Linden P J, Hanson C E 2007 Climate change 2007: Impacts, Adaptation and Vulnerability (Cambridge: Cambridge University Press) pp214-223
[3] King M D, Tsay S C, Platnick S E, Wang M, Liou K N 1997 Tech. Rep. ATBD-MOD-05
[4] Xue L F, Wei H L, Rao R Z 2004 Laser Infrared 34 286(in Chinese) [薛立芳, 魏合理, 饶瑞中 2004 激光与红外 34 286]
[5] Mendrok J, Wu D L, Stefan A B 2009 Sensors, Systems and Next-generation Satellites XIII Berlin, Germany, August 31 2009 p74740T-1
[6] Austin R T, Heymsfield A J, Stephens G L 2009 J. Geophys. Res. 114 D00A23
[7] Stephens G L, Tsay S C, Stackhouse P W Jr 1990 J. Atmosph. Sci. 47 1742
[8] Larry M, Miloshevich, Andrew J H 1996 J. Atmosph. Ocean. Technol. 14 753
[9] Andrew J H, Aron B, Carl S 2004 Am. Meteorol. Soc. 61 982
[10] Jeffrey L S, Julie A H, Andrew J H 2004 Am. Meteorol. Soc. 43 779
[11] Sassen K, CHO B S 1992 J. Appl. Meteor. 31 1275
[12] Minnis P, Heck P W, Young D F 1993 J. Atmosph. Sci. 50 1305
[13] Yao J Q, Wang J L, Zhong K, Wang R, Xu D G, Ding X, Zhang F, Wang P 2010 J. Optoelectr. Laser 21 1582 (in Chinese) [姚建铨, 汪静丽, 钟凯, 王然, 徐德刚, 丁欣, 张帆, 王鹏 2010 光电子激光 21 1582]
[14] Zhang R, Li H, Cao J C, Feng S L 2009 Acta Phys. Sin. 58 4618 (in Chinese) [张戎, 黎华, 曹俊诚, 封松林 2009 物理学报 58 4618]
[15] Tan Z Y, Chen Z, Han Y J, Zhang R, Li H, Guo X G, Cao J C 2012 Acta Phys. Sin. 61 098701 (in Chinese) [谭智勇, 陈镇, 韩英军, 张戎, 黎华, 郭旭光, 曹俊诚 2012 物理学报 61 098701]
[16] Evans K F, Walter S J, Heymsfield A J, McFarquhar G M 2002 J. Geophys. Res. 107 AAC2-1
[17] Jimenez C, Buehler S A, Rydberg B, Eriksson P, Evans K F 2007 Q. J. R. Meteorol. 133 129
[18] Zhao H B, Zheng C, Zhang Y F, Liang B, Ou N M, Miao J G 2014 Prog. Electromagn. Res. M 35 183
[19] Evans K F, Wang J R, Racette P E, Heymsfield G, Li L H 2004 J. Appl. Meteorol. 44 839
[20] Buehler S A, Defer E, Evans K F, Eliasson S, Mendrok J, Eriksson P, Lee C, Jimenez C, Prigent C, Crewell S, Kasai Y, Bennartz R, Gasiewski A J 2012 Atmos. Meas. Tech. 5 1529
[21] Evans K F, Walter S J, Heymsfield A J, Deeter M N 1998 J. Appl. Meteorol. 37 184
[22] Mendrok J, Baron P, Yasuko K 2008 Remote Sensing of Clouds and the Atmosphere XIII Cardiff, United Kingdom, September 15, 2008 p710704
[23] Rothman L S, Gordon I E, Babikov Y, Barbe A, Benner D C 2013 J. Quantit. Spectrosc. Radiat. Transfer 130 4
[24] Buehler S A, Eriksson P, Kuhna T 2005 J. Quantitat. Spectrosc. Radiat. Transfer 91 65
[25] Eriksson P, Buehler S A, Davis C P 2011 J. Quantitat. Spectrosc. Radiat. Transfer 112 1551
[26] Hong G, Yang P, Baum B A, Heymsfield A J, Weng F Z, Liu Q H, Heygster G, Buehler S A 2009 J. Geophys. Res. 114 D06201
[27] Mtzler C 2002 MATLAB Functions for Mie Scattering and Absorption Institute of Applied Physics, University of Bern, June 2002
[28] Anderson G P, Clough S A, Kneizys F X 1986 AFGL Atmospheric Constituent Profiles (0-120 km) (Hanscom Massachusetts: Optical Physics Division, Air Force Geophysics Laboratory) pp21-35
[29] Jeffrey L S, Dye J E, Bansemer A, Heymsfield A J, Grainger C A, Petersen W A, Cifelli R 2002 J. Appl. Meteorol. 41 97
[30] Yang P, Liou K N 2000 J. Geophys. Res. 105 4699
[31] McFarquhar G M, Heymsfield A J 1997 Am. Meteorol. Soc. 54 2187
[32] Liou K N 2002 An Introduction to Atmospheric Radiation Second Edition (New York: Academic Press) pp170-176
[33] Heymsfield A J, Miloshevich L M 2002 Am. Meteorol. Soc. 60 937
[34] Heymsfield A J, Aron B, Paul R F, Durden S L, Jeffrey L S, Dye J E, William H, Grainger C A 2002 Am. Meteorol. Soc. 59 3457
-
[1] Rossow W B, Schiffer R A 1991 Bull. Amer. Meteor. Soc. 72 2
[2] Parry M L, Canziani O F, Palutikof J P, van der Linden P J, Hanson C E 2007 Climate change 2007: Impacts, Adaptation and Vulnerability (Cambridge: Cambridge University Press) pp214-223
[3] King M D, Tsay S C, Platnick S E, Wang M, Liou K N 1997 Tech. Rep. ATBD-MOD-05
[4] Xue L F, Wei H L, Rao R Z 2004 Laser Infrared 34 286(in Chinese) [薛立芳, 魏合理, 饶瑞中 2004 激光与红外 34 286]
[5] Mendrok J, Wu D L, Stefan A B 2009 Sensors, Systems and Next-generation Satellites XIII Berlin, Germany, August 31 2009 p74740T-1
[6] Austin R T, Heymsfield A J, Stephens G L 2009 J. Geophys. Res. 114 D00A23
[7] Stephens G L, Tsay S C, Stackhouse P W Jr 1990 J. Atmosph. Sci. 47 1742
[8] Larry M, Miloshevich, Andrew J H 1996 J. Atmosph. Ocean. Technol. 14 753
[9] Andrew J H, Aron B, Carl S 2004 Am. Meteorol. Soc. 61 982
[10] Jeffrey L S, Julie A H, Andrew J H 2004 Am. Meteorol. Soc. 43 779
[11] Sassen K, CHO B S 1992 J. Appl. Meteor. 31 1275
[12] Minnis P, Heck P W, Young D F 1993 J. Atmosph. Sci. 50 1305
[13] Yao J Q, Wang J L, Zhong K, Wang R, Xu D G, Ding X, Zhang F, Wang P 2010 J. Optoelectr. Laser 21 1582 (in Chinese) [姚建铨, 汪静丽, 钟凯, 王然, 徐德刚, 丁欣, 张帆, 王鹏 2010 光电子激光 21 1582]
[14] Zhang R, Li H, Cao J C, Feng S L 2009 Acta Phys. Sin. 58 4618 (in Chinese) [张戎, 黎华, 曹俊诚, 封松林 2009 物理学报 58 4618]
[15] Tan Z Y, Chen Z, Han Y J, Zhang R, Li H, Guo X G, Cao J C 2012 Acta Phys. Sin. 61 098701 (in Chinese) [谭智勇, 陈镇, 韩英军, 张戎, 黎华, 郭旭光, 曹俊诚 2012 物理学报 61 098701]
[16] Evans K F, Walter S J, Heymsfield A J, McFarquhar G M 2002 J. Geophys. Res. 107 AAC2-1
[17] Jimenez C, Buehler S A, Rydberg B, Eriksson P, Evans K F 2007 Q. J. R. Meteorol. 133 129
[18] Zhao H B, Zheng C, Zhang Y F, Liang B, Ou N M, Miao J G 2014 Prog. Electromagn. Res. M 35 183
[19] Evans K F, Wang J R, Racette P E, Heymsfield G, Li L H 2004 J. Appl. Meteorol. 44 839
[20] Buehler S A, Defer E, Evans K F, Eliasson S, Mendrok J, Eriksson P, Lee C, Jimenez C, Prigent C, Crewell S, Kasai Y, Bennartz R, Gasiewski A J 2012 Atmos. Meas. Tech. 5 1529
[21] Evans K F, Walter S J, Heymsfield A J, Deeter M N 1998 J. Appl. Meteorol. 37 184
[22] Mendrok J, Baron P, Yasuko K 2008 Remote Sensing of Clouds and the Atmosphere XIII Cardiff, United Kingdom, September 15, 2008 p710704
[23] Rothman L S, Gordon I E, Babikov Y, Barbe A, Benner D C 2013 J. Quantit. Spectrosc. Radiat. Transfer 130 4
[24] Buehler S A, Eriksson P, Kuhna T 2005 J. Quantitat. Spectrosc. Radiat. Transfer 91 65
[25] Eriksson P, Buehler S A, Davis C P 2011 J. Quantitat. Spectrosc. Radiat. Transfer 112 1551
[26] Hong G, Yang P, Baum B A, Heymsfield A J, Weng F Z, Liu Q H, Heygster G, Buehler S A 2009 J. Geophys. Res. 114 D06201
[27] Mtzler C 2002 MATLAB Functions for Mie Scattering and Absorption Institute of Applied Physics, University of Bern, June 2002
[28] Anderson G P, Clough S A, Kneizys F X 1986 AFGL Atmospheric Constituent Profiles (0-120 km) (Hanscom Massachusetts: Optical Physics Division, Air Force Geophysics Laboratory) pp21-35
[29] Jeffrey L S, Dye J E, Bansemer A, Heymsfield A J, Grainger C A, Petersen W A, Cifelli R 2002 J. Appl. Meteorol. 41 97
[30] Yang P, Liou K N 2000 J. Geophys. Res. 105 4699
[31] McFarquhar G M, Heymsfield A J 1997 Am. Meteorol. Soc. 54 2187
[32] Liou K N 2002 An Introduction to Atmospheric Radiation Second Edition (New York: Academic Press) pp170-176
[33] Heymsfield A J, Miloshevich L M 2002 Am. Meteorol. Soc. 60 937
[34] Heymsfield A J, Aron B, Paul R F, Durden S L, Jeffrey L S, Dye J E, William H, Grainger C A 2002 Am. Meteorol. Soc. 59 3457
Catalog
Metrics
- Abstract views: 6526
- PDF Downloads: 264
- Cited By: 0