Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Laser propagation transmission properties characteristics between airborne communication terminal and unmanned aerial vehicle target in complex atmospheric background

Wang Ming-Jun Wei Ya-Fei Ke Xi-Zheng

Citation:

Laser propagation transmission properties characteristics between airborne communication terminal and unmanned aerial vehicle target in complex atmospheric background

Wang Ming-Jun, Wei Ya-Fei, Ke Xi-Zheng
PDF
HTML
Get Citation
  • Clouds, aerosols and atmospheric molecules are major components of the atmosphere. In the fields of atmospheric physics such as target detection, wireless optical communication and remote sensing, these atmospheric components have a strong attenuation effect on laser transmission. Based on the successive scattering method for solving the radiative transfer equation, the laser transmission model between airborne wireless optical communication terminal and ground-to-air unmanned aerial vehicle (UAV) target in complex atmospheric background is established in this paper. Considering the fact that cirrus cloud, atmospheric molecules and aerosols exist in the real atmospheric background, the variations of direct transmission power, first-order scattering transmission power of 1.55 μm laser emitted by the airborne wireless optical communication terminal with UAV target height are calculated numerically under complex atmospheric background. The effects of the aircraft located at different locations, effective radius of ice crystal particles in cirrus cloud, as well as the horizontal distance between the aircraft and UAV target on received laser transmission power are also analyzed. In the first three examples (i.e., aircraft is above, below, and inside cirrus cloud), laser direct transmission power (LDTP) is much larger than first-order scattering transmission power (FSTP); when the UAV target rises into the cloud, the FSTP is significantly enhanced as a result of the effect of diffraction light. The fourth example is for calculating the variations of LDTP and FSTP with UAV target height for different effective radii of ice crystals. The results show that the LDTP decreases with the increase of effective radius, whereas the FSTP presents an opposite scenario. The fifth example is for calculating the variations of LDTP and FSTP with UAV target height for different horizontal distances. The results show that the LDTP and FSTP decrease with the increase of the horizontal distance, which is obviously realistic. In summary, it is concluded that the laser transmitted power through cirrus clouds is strongly dependent on aircraft position: above, below, or inside cirrus cloud; the horizontal distance between the aircraft and UVA target, and effective radii of ice crystals have great influences on LDTP and FSTP. Compared with the atmosphere above the clouds, the molecules and aerosols below the clouds make the laser power have a strong attenuation. The results given in this paper provide theoretical support for further studying the laser communication experiment in ground-to-air links, UAV formation, command and networking technology in complex atmospheric background.
      Corresponding author: Wang Ming-Jun, wmjxd@aliyun.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61771385, 61377080, 60977054) and the Key Industry Innovation Chain of Shaanxi Province, China (Grant No. 2017ZDCXL-GY-06-01).
    [1]

    石广玉 2007 大气辐射学 (北京: 科学出版社) 第1−157页

    Shi G Y 2007 Atmospheric Radiation (Beijing: Science Press) pp1−157 (in Chinese)

    [2]

    Yang P, Hong G, Dessler A E, Ou S S C, Liou K N, Minnis P, Harshvardhan 2010 Bul. Amer. Meteor. Soc. 91 473Google Scholar

    [3]

    Baran A J 2012 Atmos. Res. 112 45Google Scholar

    [4]

    柯熙政, 邓丽君 2016 无线光通信 (北京: 科学出版社) 第98−151页

    Ke X Z, Deng L J 2016 Optical Wireless Communication (Beijing: Science Press) pp98−151 (in Chinese)

    [5]

    王明军 2008 博士学位论文 (西安: 西安电子科技大学)

    Wang M J 2008 Ph. D. Dissertation (Xi'an: Xidian University) (in Chinese)

    [6]

    刘东, 刘群, 白剑, 张与鹏 2017 红外与激光工程 46 1202001

    Liu D, Liu Q, Bai J, Zhang Y P 2017 Infrar. Laser Eng. 46 1202001

    [7]

    廖国男 (郭彩丽, 周诗健 译) 2004 大气辐射导论 (北京: 气象科学出版社) 第5−10页

    Liou K N (translated by Guo C L, Zhou S J) 2004 An Introduction to Atmospheric Radiation (Beijing: Meteorological Science Press) pp5−10 (in Chinese)

    [8]

    Arnon S, Sadot D, Kopeika N S 1994 J. Mod. Opt. 41 1591Google Scholar

    [9]

    李颖颖, 孙东松, 王珍珠, 沈法华, 周小林, 董晶晶 2008 激光技术 32 611

    Li Y Y, Sun D S, Wang Z Z, Shen F H, Zhou X L, Dong J J 2008 Laser Technology 32 611

    [10]

    胡秀寒, 周田华, 朱小磊, 陈卫标 2015 红外 36 8Google Scholar

    Hu X H, Zhou T H, Zhu X L, Chen W B 2015 Infrared 36 8Google Scholar

    [11]

    Hovis W A, Blaine L R, Forman M L 1970 Appl. Opt. 9 561Google Scholar

    [12]

    Liou K N, Takano Y, Ou S C, Heymsfield A, Kreiss W 1990 Appl. Opt. 29 1866Google Scholar

    [13]

    Uthe E E, Nielsen N B, Osberg T E 1998 Geophys. Res. Lett. 25 1339Google Scholar

    [14]

    Liou K N, Takano Y, Ou S C, Johnson M W 2000 Appl. Opt. 39 4886Google Scholar

    [15]

    Kolb I L, Cheng W Y Y, Cotton W R 2001 Proc. SPIE September 4−7, 2001 p124

    [16]

    Norquist D C, Desrochers P R, Mcnicholl P J, Roadcap J R 2008 J. Appl. Meteorol. Climatol. 47 1322Google Scholar

    [17]

    王红霞, 竹有章, 田涛, 李爱君 2013 物理学报 62 024214Google Scholar

    Wang H X, Zhu Y Z, Tian T, Li A J 2013 Acta Phys. Sin. 62 024214Google Scholar

    [18]

    Hess M, Koepke P, Schult I 1998 Bul. Amer. Meteor. Soc. 79 831Google Scholar

    [19]

    Koepke P, Gasteiger J, Hess M 2015 Atmos. Chem. Phys. 15 5947Google Scholar

    [20]

    杨玉峰, 秦建华, 李挺, 姚柳 2017 红外与激光工程 46 S106006

    Yang Y F, Qin J H, Li T, Yao L 2017 Infrar. Laser Eng. 46 S106006

    [21]

    饶瑞中 2012 现代大气光学 (北京: 科学出版社) 第113−215页

    Rao R Z 2012 Modern Atmospheric Optics (Beijing: Science Press) pp113−215 (in Chinese)

    [22]

    赵少卿, 张雏 2013 激光与光电子学进展 50 110101

    Zhao S Q, Zhang C 2013 Laser Optoelectron. Prog. 50 110101

    [23]

    Coakley J, Yang P (刘超, 银燕 译) 2017 大气辐射: 含典型案例的入门教程 (北京: 高等教育出版社) 第97−101页

    Coakley J, Yang P (translated by Liu C, Yin Y) 2017 Atmospheric Radiation: A Primer with Illustrative Solutions (Beijing: Higher Education Press) pp97−101 (in Chinese)

    [24]

    Wendisch M, Yang P 著 (李正强, 李莉, 候伟真, 许华 译) 2014 大气辐射传输原理 (北京: 高等教育出版社) 第172−175页

    Wendisch M, Yang P (translated by Li Z C, Li L, Hou Z W, Xu H) 2014 Theory of Atmospheric Radiative Transfer (Beijing: Higher Education Press) pp172−175 (in Chinese)

    [25]

    Liou K N, Yang P 2016 Light Scattering by Ice Crystals: Fundamentals and Applications (Cambridge: Cambridge University Press) pp1−5, 269−273

    [26]

    Emde C, Schnell R B, Kylling A, Mayer B, Gasteiger J, Hamann U, Kylling J, Richter B, Pause C, Dowling T, Bugliaro L 2015 Geosci. Model. Dev. 8 10237Google Scholar

    [27]

    Yi B Q, Yang P, Liu Q F, Delst P V, Boukabara S A, Weng F Z 2016 Geosci. Model Dev. 121 13577Google Scholar

    [28]

    Hansen J E, Travis L D 1974 Space Sci. Rev. 16 527Google Scholar

    [29]

    Mishchenko M I, Yang P 2018 J. Quant. Spectrosc. Radiat. Transf. 205 241Google Scholar

    [30]

    Petty G W, Huang W 2011 J. Atmos. Sci. 68 1460

    [31]

    Warren S G, Brandt R E 2008 J. Geophys. Res. Atmos. 113 D14220Google Scholar

    [32]

    王英俭, 范承玉, 魏合理 2015 激光在大气和海水中传输及应用 (北京: 国防工业出版社) 第282−327页

    Wang Y J, Fan C Y, Wei H L 2015 Laser Beam Propagation and Applications Through the Atmosphere and Sea Water (Beijing: National Defence Industry Press) pp282−327 (in Chinese)

  • 图 1  飞机对无人机目标的几何模型中激光通过卷云的直接传输、一阶散射传输的示意图

    Figure 1.  Laser direct transmission, first order scattering transmission through cirrus clouds in aircraft-UAV targets geometric model.

    图 2  卷云的消光系数、单次散射反照率随卷云有效半径的变化

    Figure 2.  (a) Average extinction coefficient, (b) single scattering albedo of cirrus clouds vs. effective radius at 1.55 μm wavelength.

    图 3  卷云的平均相函数随散射角的变化

    Figure 3.  Average phase function of cirrus clouds vs. scattering angle

    图 4  (a)大气分子、(b)气溶胶的散射和消光系数随海拔高度的关系

    Figure 4.  Scattering and extinction coefficient of (a) atmospheric molecules, (b) aerosol vs. altitude.

    图 5  当飞机高度为9 km时, 激光通过卷云的(a)直接传输功率、(b)一阶散射传输功率随无人机目标高度的变化

    Figure 5.  (a) Direct transmission, (b) first-order scattering transmission through cirrus clouds vs. UAV target height when aircraft’s height is 9 km.

    图 6  当飞机高度为6 km时, 激光通过卷云的(a)直接传输功率、(b)一阶散射传输功率随无人机目标高度的变化

    Figure 6.  (a) Direct transmission, (b) first-order scattering transmission through cirrus clouds vs. UAV target height when aircraft’s height is 6 km.

    图 7  当飞机高度为7.5 km时, 激光通过卷云的(a)直接传输功率、(b)一阶散射传输功率随无人机目标高度的变化

    Figure 7.  (a) Direct transmission, (b) first-order scattering transmission through cirrus clouds vs. UAV target height when aircraft’s height is 7.5 km.

    图 8  卷云冰晶粒子的有效半径${r_{{\rm{eff}}}}$不同时, 激光通过卷云的(a)直接传输功率、(b)一阶散射传输功率随无人机目标高度的变化

    Figure 8.  (a) Direct transmission, (b) first-order scattering transmission through cirrus clouds vs. UAV target height for different effective radius reff.

    图 9  水平距离d不同时, 激光通过卷云的(a)直接传输功率、(b) 一阶散射传输功率随无人机目标高度的变化

    Figure 9.  (a) Direct transmission, (b) first-order scattering transmission through cirrus clouds vs. UAV target height for different d.

  • [1]

    石广玉 2007 大气辐射学 (北京: 科学出版社) 第1−157页

    Shi G Y 2007 Atmospheric Radiation (Beijing: Science Press) pp1−157 (in Chinese)

    [2]

    Yang P, Hong G, Dessler A E, Ou S S C, Liou K N, Minnis P, Harshvardhan 2010 Bul. Amer. Meteor. Soc. 91 473Google Scholar

    [3]

    Baran A J 2012 Atmos. Res. 112 45Google Scholar

    [4]

    柯熙政, 邓丽君 2016 无线光通信 (北京: 科学出版社) 第98−151页

    Ke X Z, Deng L J 2016 Optical Wireless Communication (Beijing: Science Press) pp98−151 (in Chinese)

    [5]

    王明军 2008 博士学位论文 (西安: 西安电子科技大学)

    Wang M J 2008 Ph. D. Dissertation (Xi'an: Xidian University) (in Chinese)

    [6]

    刘东, 刘群, 白剑, 张与鹏 2017 红外与激光工程 46 1202001

    Liu D, Liu Q, Bai J, Zhang Y P 2017 Infrar. Laser Eng. 46 1202001

    [7]

    廖国男 (郭彩丽, 周诗健 译) 2004 大气辐射导论 (北京: 气象科学出版社) 第5−10页

    Liou K N (translated by Guo C L, Zhou S J) 2004 An Introduction to Atmospheric Radiation (Beijing: Meteorological Science Press) pp5−10 (in Chinese)

    [8]

    Arnon S, Sadot D, Kopeika N S 1994 J. Mod. Opt. 41 1591Google Scholar

    [9]

    李颖颖, 孙东松, 王珍珠, 沈法华, 周小林, 董晶晶 2008 激光技术 32 611

    Li Y Y, Sun D S, Wang Z Z, Shen F H, Zhou X L, Dong J J 2008 Laser Technology 32 611

    [10]

    胡秀寒, 周田华, 朱小磊, 陈卫标 2015 红外 36 8Google Scholar

    Hu X H, Zhou T H, Zhu X L, Chen W B 2015 Infrared 36 8Google Scholar

    [11]

    Hovis W A, Blaine L R, Forman M L 1970 Appl. Opt. 9 561Google Scholar

    [12]

    Liou K N, Takano Y, Ou S C, Heymsfield A, Kreiss W 1990 Appl. Opt. 29 1866Google Scholar

    [13]

    Uthe E E, Nielsen N B, Osberg T E 1998 Geophys. Res. Lett. 25 1339Google Scholar

    [14]

    Liou K N, Takano Y, Ou S C, Johnson M W 2000 Appl. Opt. 39 4886Google Scholar

    [15]

    Kolb I L, Cheng W Y Y, Cotton W R 2001 Proc. SPIE September 4−7, 2001 p124

    [16]

    Norquist D C, Desrochers P R, Mcnicholl P J, Roadcap J R 2008 J. Appl. Meteorol. Climatol. 47 1322Google Scholar

    [17]

    王红霞, 竹有章, 田涛, 李爱君 2013 物理学报 62 024214Google Scholar

    Wang H X, Zhu Y Z, Tian T, Li A J 2013 Acta Phys. Sin. 62 024214Google Scholar

    [18]

    Hess M, Koepke P, Schult I 1998 Bul. Amer. Meteor. Soc. 79 831Google Scholar

    [19]

    Koepke P, Gasteiger J, Hess M 2015 Atmos. Chem. Phys. 15 5947Google Scholar

    [20]

    杨玉峰, 秦建华, 李挺, 姚柳 2017 红外与激光工程 46 S106006

    Yang Y F, Qin J H, Li T, Yao L 2017 Infrar. Laser Eng. 46 S106006

    [21]

    饶瑞中 2012 现代大气光学 (北京: 科学出版社) 第113−215页

    Rao R Z 2012 Modern Atmospheric Optics (Beijing: Science Press) pp113−215 (in Chinese)

    [22]

    赵少卿, 张雏 2013 激光与光电子学进展 50 110101

    Zhao S Q, Zhang C 2013 Laser Optoelectron. Prog. 50 110101

    [23]

    Coakley J, Yang P (刘超, 银燕 译) 2017 大气辐射: 含典型案例的入门教程 (北京: 高等教育出版社) 第97−101页

    Coakley J, Yang P (translated by Liu C, Yin Y) 2017 Atmospheric Radiation: A Primer with Illustrative Solutions (Beijing: Higher Education Press) pp97−101 (in Chinese)

    [24]

    Wendisch M, Yang P 著 (李正强, 李莉, 候伟真, 许华 译) 2014 大气辐射传输原理 (北京: 高等教育出版社) 第172−175页

    Wendisch M, Yang P (translated by Li Z C, Li L, Hou Z W, Xu H) 2014 Theory of Atmospheric Radiative Transfer (Beijing: Higher Education Press) pp172−175 (in Chinese)

    [25]

    Liou K N, Yang P 2016 Light Scattering by Ice Crystals: Fundamentals and Applications (Cambridge: Cambridge University Press) pp1−5, 269−273

    [26]

    Emde C, Schnell R B, Kylling A, Mayer B, Gasteiger J, Hamann U, Kylling J, Richter B, Pause C, Dowling T, Bugliaro L 2015 Geosci. Model. Dev. 8 10237Google Scholar

    [27]

    Yi B Q, Yang P, Liu Q F, Delst P V, Boukabara S A, Weng F Z 2016 Geosci. Model Dev. 121 13577Google Scholar

    [28]

    Hansen J E, Travis L D 1974 Space Sci. Rev. 16 527Google Scholar

    [29]

    Mishchenko M I, Yang P 2018 J. Quant. Spectrosc. Radiat. Transf. 205 241Google Scholar

    [30]

    Petty G W, Huang W 2011 J. Atmos. Sci. 68 1460

    [31]

    Warren S G, Brandt R E 2008 J. Geophys. Res. Atmos. 113 D14220Google Scholar

    [32]

    王英俭, 范承玉, 魏合理 2015 激光在大气和海水中传输及应用 (北京: 国防工业出版社) 第282−327页

    Wang Y J, Fan C Y, Wei H L 2015 Laser Beam Propagation and Applications Through the Atmosphere and Sea Water (Beijing: National Defence Industry Press) pp282−327 (in Chinese)

  • [1] Wu Charles F., Zhao Yao, Weng Su-Ming, Chen Min, Sheng Zheng-Ming. Nonlinear evolution of stimulated scattering near 1/4 critical density. Acta Physica Sinica, 2019, 68(19): 195202. doi: 10.7498/aps.68.20190883
    [2] Deng Wan-Tao, Zhao Gang, Xia Hui-Jun, Zhang Mao, Yang Yi-Fan. Method of correcting tilt aberration for array laser of incoherent combination. Acta Physica Sinica, 2019, 68(23): 234205. doi: 10.7498/aps.68.20190961
    [3] Zhong Wen-Ting, Liu Jun, Hua Deng-Xin, Hou Hai-Yan, Yan Ke-Jun. Multi-wavelength light-emitting diode light source radar system and near-ground atmospheric aerosol detection. Acta Physica Sinica, 2018, 67(18): 184208. doi: 10.7498/aps.67.20180721
    [4] Wang Qian, Bi Yan-Meng, Yang Zhong-Dong. Simulation analysis of aerosol effect on shortwave infrared remote sensing detection of atmospheric CO2. Acta Physica Sinica, 2018, 67(3): 039202. doi: 10.7498/aps.67.20171993
    [5] Di Hui-Ge, Hua Hang-Bo, Zhang Jia-Qi, Zhang Zhan-Fei, Hua Deng-Xin, Gao Fei, Wang Li, Xin Wen-Hui, Zhao Heng. Design and analysis of high-spectral resolution lidar discriminator. Acta Physica Sinica, 2017, 66(18): 184202. doi: 10.7498/aps.66.184202
    [6] Zheng Li-Juan, Cheng Tian-Hai, Wu Yu. Effect of aggregated black carbon aging on infrared absorption and longwave radiative forcing. Acta Physica Sinica, 2017, 66(16): 169201. doi: 10.7498/aps.66.169201
    [7] Li Shu-Lei, Liu Lei, Gao Tai-Chang, Huang Wei, Hu Shuai. Sensitivity analysis of terahertz wave passive remote sensing of cirrus microphysical parameters. Acta Physica Sinica, 2016, 65(13): 134102. doi: 10.7498/aps.65.134102
    [8] Ru Chang-Jian, Wei Rui-Xuan, Qi Xiao-Ming, Che Jun, Guo Qing. Macroscopic stable mechanism of autonomous cooperative system. Acta Physica Sinica, 2015, 64(10): 100202. doi: 10.7498/aps.64.100202
    [9] Qi Yue, Fang Shi-Bo, Zhou Wen-Zuo. Correlative analysis between the changes of surface solar radiation and its relationship with air pollution, as well as meteorological factor in eastern and western China in recent 50 years. Acta Physica Sinica, 2015, 64(8): 089201. doi: 10.7498/aps.64.089201
    [10] Zhao Hu, Hua Deng-Xin, Mao Jian-Dong, Zhou Chun-Yan. Correction to near-range multiwavelength lidar optical parameter based on the measurements of particle size distribution. Acta Physica Sinica, 2015, 64(12): 124208. doi: 10.7498/aps.64.124208
    [11] Cui Jun-Hui, Wei Rui-Xuan, Qi Xiao-Ming. Synchronization control for a class of tele-operation system with stochastically time-varying communication delays. Acta Physica Sinica, 2014, 63(23): 230203. doi: 10.7498/aps.63.230203
    [12] Ru Chang-Jian, Wei Rui-Xuan, Shen Dong. Study on stability control mechanism of multiple unmanned aerial vehicle cooperative system. Acta Physica Sinica, 2014, 63(22): 220202. doi: 10.7498/aps.63.220202
    [13] Di Hui-Ge, Hou Xiao-Long, Zhao Hu, Yan Lei-Jie, Wei Xin, Zhao Huan, Hua Deng-Xin. Detections and analyses of aerosol optical properties under different weather conditions using multi-wavelength Mie lidar. Acta Physica Sinica, 2014, 63(24): 244206. doi: 10.7498/aps.63.244206
    [14] Liu Xiao-Liang, Sun Shao-Hua, Cao Yu, Sun Ming-Ze, Liu Qing-Cao, Hu Bi-Tao. Experimental study on the behaviors of femtosecond-laser-induced low-pressure N2 plasma. Acta Physica Sinica, 2013, 62(4): 045201. doi: 10.7498/aps.62.045201
    [15] Wang Hong-Xia, Zhu You-Zhang, Tian Tao, Li Ai-Jun. Characteristics of laser transmission in different types of aerosols. Acta Physica Sinica, 2013, 62(2): 024214. doi: 10.7498/aps.62.024214
    [16] Wang Guang-Hui, Wang Xiao-Fang, Dong Ke-Gong. Ultra-short ultra-intense laser guiding and its influence on electron acceleration. Acta Physica Sinica, 2012, 61(16): 165201. doi: 10.7498/aps.61.165201
    [17] Bai Lu, Tang Shuang-Qing, Wu Zhen-Sen, Xie Pin-Hua, Wang Shi-Mei. Study of random sample scattering phase functions of polydisperse atmospheric aerosol in ultraviolet band. Acta Physica Sinica, 2010, 59(3): 1749-1755. doi: 10.7498/aps.59.1749
    [18] Zhang Gai-Xia, Zhao Yue-Feng, Zhang Yin-Chao, Zhao Pei-Tao. A lidar system for monitoring planetary boundary layer aerosol in daytime. Acta Physica Sinica, 2008, 57(11): 7390-7395. doi: 10.7498/aps.57.7390
    [19] Zuo Hao-Yi, Yang Jing-Guo. Retrieving of aerosol size distribution based on the measurement of aerosol optical depth. Acta Physica Sinica, 2007, 56(10): 6132-6136. doi: 10.7498/aps.56.6132
    [20] Si Fu-Qi, Liu Jian-Guo, Xie Pin-Hua, Zhang Yu-Jun, Dou Ke, Liu Wen-Qing. Determination of size distribution of atmospheric aerosol by DOAS. Acta Physica Sinica, 2006, 55(6): 3165-3169. doi: 10.7498/aps.55.3165
Metrics
  • Abstract views:  8802
  • PDF Downloads:  102
  • Cited By: 0
Publishing process
  • Received Date:  19 November 2018
  • Accepted Date:  07 March 2019
  • Available Online:  01 May 2019
  • Published Online:  05 May 2019

/

返回文章
返回