搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多重查找表的太赫兹波段卷云微物理参数的反演方法

李书磊 刘磊 高太长 胡帅 黄威

引用本文:
Citation:

基于多重查找表的太赫兹波段卷云微物理参数的反演方法

李书磊, 刘磊, 高太长, 胡帅, 黄威

Retrieval method of cirrus microphysical parameters at terahertz wave based on multiple lookup tables

Li Shu-Lei, Liu Lei, Gao Tai-Chang, Hu Shuai, Huang Wei
PDF
导出引用
  • 太赫兹波长和典型卷云冰晶粒子尺度处于同一量级,是理论上遥感卷云微物理参数(粒子尺度和冰水路径)的最佳波段.结合183,325,462,664,874 GHz通道的辐射传输特性,通过通道亮温差、亮温差斜率等五个参数量化粒子尺度和冰水路径对太赫兹辐射光谱的影响,基于加权最小二乘法建立了多重查找表反演卷云微物理参数的方法,并通过模拟数据序列进行了理论反演误差分析.结果表明:多重查找表反演方法可实现粒子尺度50-500 m和冰水路径10-500 g/m2范围内卷云微物理参数稳定、有效的反演.与只采用亮温差特征或亮温差斜率特征相比,粒子尺度的反演误差分别降低了68.78%和60.28%,冰水路径的反演误差则分别降低了78.17%和49.01%.对反演结果进行不确定度分析表明,粒子尺度和冰水路径的不确定度与粒子尺度和冰水路径的大小相关,冰水路径的不确定度分布在0-15 g/m2范围内,粒子尺度的不确定度分布在0-20 m范围内.研究结果对于进一步发展太赫兹波被动遥感卷云技术、提高卷云参数的反演精度具有重要借鉴意义.
    Cirrus is an important regulator for the flow of radiant energy in the earth-atmosphere system through the processes of scattering and absorption of radiation. In order to satisfy the urgent requirement for accurate retrieval of cirrus microphysical properties, terahertz wave is expected to be the best waveband for inverting cirrus particle size and ice water path, with terahertz wavelengths on the order of the size of typical cirrus particles. There is an urgent need for establishing stable and accurate inversion method. A new retrieval method for particle size and ice water path is developed based on multiple lookup tables for spaceborne measurements of brightness temperature spectrum of 183 GHz, 325 GHz, 462 GHz, 664 GHz, and 874 GHz channels. Five parameters are derived to quantify the effects of particle size and ice water path on terahertz radiation spectrum due to the scattering of ice clouds, manifested by brightness temperature difference, brightness temperature difference slope, etc. To retrieve cirrus microphysical parameters, a weighted least square fit that matches the modeled parameters is used. The analysis of retrieval errors are conducted by a simulated data series and the results are compared with those retrieved by the other two methods, i. e., difference method and slope method. The results retrieved by the multiple lookup table method are much closer to the simulated data series than those from the other two methods. It is indicated that the method introduced here is a stable and valid method of inverting particles between 50 and 500 m and ice water path between 10 and 500 g/m2. Compared with the errors from the difference-featured method and slope-featured method, the retrieval errors are reduced by 68.78% and 60.28% for particle size, 78.17% and 49.01% for ice water path. The analyses of retrieval uncertainties show that, in general, uncertainties of particle size and ice water path vary with particle size and ice water path. The ice water path uncertainties mainly spread in a range of 0-15 g/m2. The particle size uncertainties fluctuate within a range of 0-20 m. In other words, for small particle size range, the uncertainties are 0-5 m for thick clouds and 5-20 m for thin clouds. However, for large particle size range, the uncertainties are 0-5 m for particles larger than 300 m and 5-15 m for those smaller than 300 m. The results will be helpful for further developing the terahertz wave remote sensing of cirrus microphysical parameter technology. Moreover, it is also an important reference to the improvement of cirrus retrieval accuracy.
      通信作者: 刘磊, liuleidll@gmail.com
    • 基金项目: 国家自然科学基金(批准号:41575024)资助的课题.
      Corresponding author: Liu Lei, liuleidll@gmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 41575024).
    [1]

    Rossow W B, Schiffer R A 1991Bull.Am.Meteorol.Soc. 72 2

    [2]

    Parry M L, Canziani O F, Palutikof J P 2007Climate change 2007:Impacts, Adaptation and Vulnerability(Cambridge:Cambridge University Press) pp214-223

    [3]

    Heymsfield A J 2003J.Atmos.Sci. 60 2592

    [4]

    Davis C P, Evans K F, Buehler S A, Wu D L, Pumphrey H C 2006Atmos.Chem.Phys.Discuss. 6 12701

    [5]

    Mendrok J, Baron P, Yasuko K 2008Remote Sensing of Clouds and the Atmosphere XⅢ Cardiff, United Kingdom, September 15, 2008 p710704

    [6]

    Mendrok J, Wu D L, Stefan A B 2009Sensors, Systems and Next-generation Satellites XⅢBerlin, Germany, August 31, 2009 p74740T-1

    [7]

    Vanek M D, Nolt I G, Tappan N D, Peter A R, Gannaway F C, Hamilton P A, Lee C, Davis J E, Predko S 2001Appl.Opt. 40 2169

    [8]

    Evans K F, Walter S J, Heymsfield A J, Mcfarquhar G 2002J.Geophys.Res. 107 4028

    [9]

    Miao J, Johnsen K P, Buehler S A, Kokhanovsky A 2003Atmos.Chem.Phys. 3 39

    [10]

    Buehler S A, Jimnez C, Evans K F, Eriksson P, Rydberg B, Heymsfield A J, Stubenrauch C J, Lohmann U, Emde C, John V O, Sreerekha T R, Davis C P 2007Q.J.R.Meteorolog.Soc. 133 109

    [11]

    Zhao H B, Zheng C, Zhang Y F, Liang B, Ou N M, Miao J G 2014Prog.Electromagn.Res.M 35 183

    [12]

    Buehler S A, Defer E, Evans K F, Eliasson S, Mendrok J, Eriksson P, Lee C, Jimenez C, Prigent C, Crewell S, Kasai Y, Bennartz R, Gasiewski A J 2012Atmos.Meas.Tech. 5 1529

    [13]

    Moyna B, Lee C, Charlton J, Rule I, King R, Oldfield M, Kangas V 2010Twenty-First International Symposium on Space Terahertz Technology Oxford, UK, March 23, 2010 185

    [14]

    Evans K F, Stephens G L 1995J.Atmos.Sci. 52 2058

    [15]

    Evans K F, Walter S J, Heymsfield A J, Deeter M N 1998J.Appl.Meteor. 37 184

    [16]

    Jimnez C, Eriksson P, Murtagh D 2003J.Geophys.Res. 108 4791

    [17]

    Jimnez C, Buehler S A, Rydberg B, Eriksson P, Evans K F 2007Q.J.R.Meteorolog.Soc. 133 129

    [18]

    Evans K F, Walter S J, Heymsfield A J, McFarquhar G M 2002J.Geophys.Res. 107 4028

    [19]

    Evans K F, Wang J R, Racette P E, Heymsfield G, Li L H 2004J.Appl.Meteorol. 44 839

    [20]

    Evans K F, Wang J R, Starr D O, Heymsfield G, Li L H, Tian L, Lawson R P, Heymsfield A J, Bansemer A 2012Atmos.Meas.Tech. 5 2277

    [21]

    Li S L, Liu L, Gao T C, Huang W, Hu S 2016Acta Phys.Sin. 65 134102(in Chinese)[李书磊, 刘磊, 高太长, 黄威, 胡帅2016物理学报65 134102]

    [22]

    Liou K N (translated by Guo C L, Zhou S J)2004An Introduction to Atmospheric Radiation(2nd Ed.)(Beijing:China Meteorology Press) pp170-176(in Chinese)[廖国男著(郭彩丽, 周诗健译)2004大气辐射导论(北京:气象出版社)第170-176页]

    [23]

    Buehler S A, Eriksson P, Kuhna T 2005J.Quant.Spectrosc.Radiat.Transfer 91 65

    [24]

    Eriksson P, Buehler S A, Davis C P 2011J.Quant.Spectrosc.Radiat.Transfer 112 1551

    [25]

    Emde C, Buehler S A, Davis C, Eriksson P, Sreerekha T R, Teichmann C 2004J.Geophys.Res. 109 D24207

    [26]

    Anderson G P, Clough S A, Kneizys F X 1986AFGL Atmospheric Constituent Profiles (0-120 km)(Hanscom Massachusetts:Optical Physics Division, Air Force Geophysics Laboratory) pp21-35

    [27]

    Hong G, Yang P, Baum B A, Heymsfield A J, Weng F Z, Liu Q H, Heygster G, Buehler S A 2009J.Geophys.Res. 114 D06201

    [28]

    Andrew J H, Aron B, Carl S 2004Am.Meteorol.Soc.61 982

    [29]

    Jeffrey L S, Julie A H, Andrew J H 2004Am.Meteorol.Soc.43 779

    [30]

    Baum B A, Heymsfield A J, Yang P, Bedka S T 2005J.Appl.Meteorol. 44 1885

    [31]

    Sheng P X, Mao J T, Li J G, Ge Z M, Zhang A C, Sang J G, Pan N X, Zhang H S 2013Atmospheric Physics(2nd Ed.)(Beijing:Peking University Press) pp304-305(in Chinese)[盛裴轩, 毛节泰, 李建国, 葛正谟, 张霭琛, 桑建国, 潘乃先, 张宏升2013大气物理学第二版(北京:北京大学出版社)第304-305页]

    [32]

    Henken C, Lindstrot R, Preusker R, Fischer J 2014Atmos.Meas.Tech. 7 3873

    [33]

    Arnold C P 2009Cloud Property Retrievals Using ATSR-2Transfer of Status Report Trinity Term pp27-28

    [34]

    Bevington P R, Robinson D K 2002Data Reduction and Error Analysis for the Physical Sciences(3rd Ed.)(New York:McGraw-Hill Education) pp36-46

  • [1]

    Rossow W B, Schiffer R A 1991Bull.Am.Meteorol.Soc. 72 2

    [2]

    Parry M L, Canziani O F, Palutikof J P 2007Climate change 2007:Impacts, Adaptation and Vulnerability(Cambridge:Cambridge University Press) pp214-223

    [3]

    Heymsfield A J 2003J.Atmos.Sci. 60 2592

    [4]

    Davis C P, Evans K F, Buehler S A, Wu D L, Pumphrey H C 2006Atmos.Chem.Phys.Discuss. 6 12701

    [5]

    Mendrok J, Baron P, Yasuko K 2008Remote Sensing of Clouds and the Atmosphere XⅢ Cardiff, United Kingdom, September 15, 2008 p710704

    [6]

    Mendrok J, Wu D L, Stefan A B 2009Sensors, Systems and Next-generation Satellites XⅢBerlin, Germany, August 31, 2009 p74740T-1

    [7]

    Vanek M D, Nolt I G, Tappan N D, Peter A R, Gannaway F C, Hamilton P A, Lee C, Davis J E, Predko S 2001Appl.Opt. 40 2169

    [8]

    Evans K F, Walter S J, Heymsfield A J, Mcfarquhar G 2002J.Geophys.Res. 107 4028

    [9]

    Miao J, Johnsen K P, Buehler S A, Kokhanovsky A 2003Atmos.Chem.Phys. 3 39

    [10]

    Buehler S A, Jimnez C, Evans K F, Eriksson P, Rydberg B, Heymsfield A J, Stubenrauch C J, Lohmann U, Emde C, John V O, Sreerekha T R, Davis C P 2007Q.J.R.Meteorolog.Soc. 133 109

    [11]

    Zhao H B, Zheng C, Zhang Y F, Liang B, Ou N M, Miao J G 2014Prog.Electromagn.Res.M 35 183

    [12]

    Buehler S A, Defer E, Evans K F, Eliasson S, Mendrok J, Eriksson P, Lee C, Jimenez C, Prigent C, Crewell S, Kasai Y, Bennartz R, Gasiewski A J 2012Atmos.Meas.Tech. 5 1529

    [13]

    Moyna B, Lee C, Charlton J, Rule I, King R, Oldfield M, Kangas V 2010Twenty-First International Symposium on Space Terahertz Technology Oxford, UK, March 23, 2010 185

    [14]

    Evans K F, Stephens G L 1995J.Atmos.Sci. 52 2058

    [15]

    Evans K F, Walter S J, Heymsfield A J, Deeter M N 1998J.Appl.Meteor. 37 184

    [16]

    Jimnez C, Eriksson P, Murtagh D 2003J.Geophys.Res. 108 4791

    [17]

    Jimnez C, Buehler S A, Rydberg B, Eriksson P, Evans K F 2007Q.J.R.Meteorolog.Soc. 133 129

    [18]

    Evans K F, Walter S J, Heymsfield A J, McFarquhar G M 2002J.Geophys.Res. 107 4028

    [19]

    Evans K F, Wang J R, Racette P E, Heymsfield G, Li L H 2004J.Appl.Meteorol. 44 839

    [20]

    Evans K F, Wang J R, Starr D O, Heymsfield G, Li L H, Tian L, Lawson R P, Heymsfield A J, Bansemer A 2012Atmos.Meas.Tech. 5 2277

    [21]

    Li S L, Liu L, Gao T C, Huang W, Hu S 2016Acta Phys.Sin. 65 134102(in Chinese)[李书磊, 刘磊, 高太长, 黄威, 胡帅2016物理学报65 134102]

    [22]

    Liou K N (translated by Guo C L, Zhou S J)2004An Introduction to Atmospheric Radiation(2nd Ed.)(Beijing:China Meteorology Press) pp170-176(in Chinese)[廖国男著(郭彩丽, 周诗健译)2004大气辐射导论(北京:气象出版社)第170-176页]

    [23]

    Buehler S A, Eriksson P, Kuhna T 2005J.Quant.Spectrosc.Radiat.Transfer 91 65

    [24]

    Eriksson P, Buehler S A, Davis C P 2011J.Quant.Spectrosc.Radiat.Transfer 112 1551

    [25]

    Emde C, Buehler S A, Davis C, Eriksson P, Sreerekha T R, Teichmann C 2004J.Geophys.Res. 109 D24207

    [26]

    Anderson G P, Clough S A, Kneizys F X 1986AFGL Atmospheric Constituent Profiles (0-120 km)(Hanscom Massachusetts:Optical Physics Division, Air Force Geophysics Laboratory) pp21-35

    [27]

    Hong G, Yang P, Baum B A, Heymsfield A J, Weng F Z, Liu Q H, Heygster G, Buehler S A 2009J.Geophys.Res. 114 D06201

    [28]

    Andrew J H, Aron B, Carl S 2004Am.Meteorol.Soc.61 982

    [29]

    Jeffrey L S, Julie A H, Andrew J H 2004Am.Meteorol.Soc.43 779

    [30]

    Baum B A, Heymsfield A J, Yang P, Bedka S T 2005J.Appl.Meteorol. 44 1885

    [31]

    Sheng P X, Mao J T, Li J G, Ge Z M, Zhang A C, Sang J G, Pan N X, Zhang H S 2013Atmospheric Physics(2nd Ed.)(Beijing:Peking University Press) pp304-305(in Chinese)[盛裴轩, 毛节泰, 李建国, 葛正谟, 张霭琛, 桑建国, 潘乃先, 张宏升2013大气物理学第二版(北京:北京大学出版社)第304-305页]

    [32]

    Henken C, Lindstrot R, Preusker R, Fischer J 2014Atmos.Meas.Tech. 7 3873

    [33]

    Arnold C P 2009Cloud Property Retrievals Using ATSR-2Transfer of Status Report Trinity Term pp27-28

    [34]

    Bevington P R, Robinson D K 2002Data Reduction and Error Analysis for the Physical Sciences(3rd Ed.)(New York:McGraw-Hill Education) pp36-46

  • [1] 陈乐迪, 范仁浩, 刘雨, 唐贡惠, 马中丽, 彭茹雯, 王牧. 基于柔性超构材料宽带调控太赫兹波的偏振态. 物理学报, 2022, 71(18): 187802. doi: 10.7498/aps.71.20220801
    [2] 彭晓昱, 周欢. 太赫兹波生物效应. 物理学报, 2022, (): . doi: 10.7498/aps.71.20211996
    [3] 侯磊, 王俊喃, 王磊, 施卫. α-乳糖水溶液太赫兹吸收光谱实验研究及模拟分析. 物理学报, 2021, 70(24): 243202. doi: 10.7498/aps.70.20211716
    [4] 王红霞, 张清华, 侯维君, 魏一苇. 不同模态沙尘暴对太赫兹波的衰减分析. 物理学报, 2021, 70(6): 064101. doi: 10.7498/aps.70.20201393
    [5] 宁辉, 王凯程, 王少萌, 宫玉彬. 强场太赫兹波作用下氢气分子振动动力学研究. 物理学报, 2021, 70(24): 243101. doi: 10.7498/aps.70.20211482
    [6] 彭晓昱, 周欢. 太赫兹波生物效应. 物理学报, 2021, 70(24): 240701. doi: 10.7498/aps.70.20211996
    [7] 王磊, 肖芮文, 葛士军, 沈志雄, 吕鹏, 胡伟, 陆延青. 太赫兹液晶材料与器件研究进展. 物理学报, 2019, 68(8): 084205. doi: 10.7498/aps.68.20182275
    [8] 陈伟, 郭立新, 李江挺, 淡荔. 时空非均匀等离子体鞘套中太赫兹波的传播特性. 物理学报, 2017, 66(8): 084102. doi: 10.7498/aps.66.084102
    [9] 莫漫漫, 文岐业, 陈智, 杨青慧, 李胜, 荆玉兰, 张怀武. 基于圆台结构的超宽带极化不敏感太赫兹吸收器. 物理学报, 2013, 62(23): 237801. doi: 10.7498/aps.62.237801
    [10] 孙丹丹, 陈智, 文岐业, 邱东鸿, 赖伟恩, 董凯, 赵碧辉, 张怀武. 二氧化钒薄膜低温制备及其太赫兹调制特性研究. 物理学报, 2013, 62(1): 017202. doi: 10.7498/aps.62.017202
    [11] 司黎明, 侯吉旋, 刘埇, 吕昕. 基于负微分电阻碳纳米管的太赫兹波有源超材料特性参数提取. 物理学报, 2013, 62(3): 037806. doi: 10.7498/aps.62.037806
    [12] 张会云, 刘蒙, 尹贻恒, 吴志心, 申端龙, 张玉萍. 基于格林函数法研究金属线栅在太赫兹波段的散射特性. 物理学报, 2013, 62(19): 194207. doi: 10.7498/aps.62.194207
    [13] 王玥, 王暄, 贺训军, 梅金硕, 陈明华, 殷景华, 雷清泉. 太赫兹波段表面等离子光子学研究进展. 物理学报, 2012, 61(13): 137301. doi: 10.7498/aps.61.137301
    [14] 郑灵, 赵青, 刘述章, 邢晓俊. 太赫兹波在非磁化等离子体中的传输特性研究. 物理学报, 2012, 61(24): 245202. doi: 10.7498/aps.61.245202
    [15] 陆金星, 黄志明, 黄敬国, 王兵兵, 沈学民. 相位失配与材料吸收对利用GaSe差频产生太赫兹波功率影响的研究. 物理学报, 2011, 60(2): 024209. doi: 10.7498/aps.60.024209
    [16] 王玥, 吴群, 吴昱明, 傅佳辉, 王东兴, 王岩, 李乐伟. 碳纳米管辐射太赫兹波的理论分析与数值验证. 物理学报, 2011, 60(5): 057801. doi: 10.7498/aps.60.057801
    [17] 李忠洋, 姚建铨, 李俊, 邴丕彬, 徐德刚, 王鹏. 基于闪锌矿晶体中受激电磁耦子散射产生可调谐太赫兹波的理论研究. 物理学报, 2010, 59(9): 6237-6242. doi: 10.7498/aps.59.6237
    [18] 张戎, 曹俊诚. 光子晶体对太赫兹波的调制特性研究. 物理学报, 2010, 59(6): 3924-3929. doi: 10.7498/aps.59.3924
    [19] 王玥, 吴群, 施卫, 贺训军, 殷景华. 基于纳观域碳纳米管的太赫兹波天线研究. 物理学报, 2009, 58(2): 919-924. doi: 10.7498/aps.58.919
    [20] 孙红起, 赵国忠, 张存林, 杨国桢. 不同中心波长飞秒脉冲激发InAs表面辐射太赫兹波的机理研究. 物理学报, 2008, 57(2): 790-795. doi: 10.7498/aps.57.790
计量
  • 文章访问数:  4912
  • PDF下载量:  195
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-05
  • 修回日期:  2016-11-30
  • 刊出日期:  2017-03-05

/

返回文章
返回