搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双强度调制静态傅里叶变换偏振成像光谱系统测量原理及仿真

于慧 张瑞 李克武 薛锐 王志斌

引用本文:
Citation:

双强度调制静态傅里叶变换偏振成像光谱系统测量原理及仿真

于慧, 张瑞, 李克武, 薛锐, 王志斌

Principles and simulation of spectropolarimetirc imaging technique based on static dual intensity-modulated Fourier transform

Yu Hui, Zhang Rui, Li Ke-Wu, Xue Rui, Wang Zhi-Bin
PDF
导出引用
  • 为了抑制背景噪声,获得高信噪比的纯干涉条纹并实现图像、光谱和全偏振信息的同时测量,提出了一种基于双强度调制的静态傅里叶变换偏振成像光谱技术新方案.系统由前置望远系统、两个相位延迟器构成的偏振光谱调制模块、Wollaston棱镜构成的偏振分束器、Savart偏光镜和线偏振器构成的干涉模块以及CCD面阵探测器组成,可在单一探测器上同时获取两幅经过不同强度调制的全偏振干涉图,通过对两幅全偏振干涉图的简单加减运算,便可获得探测目标清晰的纯图像和高信噪比的纯干涉条纹.对该系统的图像和光谱偏振复原过程进行了理论分析和数值模拟,结果表明该系统可有效分离探测目标的背景图像和干涉图像,实现高精度的光谱复原和全偏振信息的有效提取,具有高稳定性、高光谱、高灵敏度、高信噪比、信息复原精度高及数据处理复杂度低等优点,为偏振干涉成像光谱技术的发展提供了新思路.
    Traditional imaging spectropolarimetry generally requires slit, moving parts, electrically tunable devices, or the use of micropolarized arrays. Furthermore, the acquired raw data are a physical superposition of interferogram and image. Given their complicated structure, poor seismic capacity, low detection sensitivity, and heavy computations with approximation in spectral reconstruction, meeting the needs for applications in aviation, remote sensing, and field detection is difficult. To overcome these drawbacks, a new spectropolarimetric imaging technique based on static dual intensity-modulated Fourier transform is presented. The system consists of a front telescopic system, two phase retarders, a linear polarizer, a Wollaston prism, a Savart polariscope, a linear analyzer, a reimaging system, and a charge-coupled device (CCD) array detector. The incident light is modulated through a module of polarization spectrum modulation, which consists of the retarders and the polarizer. The Wollaston prism splits the modulated incident light into two equal intensities, orthogonally polarized components with a small divergent angle. After passing through the interference module, which is composed of the Savart polariscope and the analyzer, then the reimaging system, two full-polarization interferograms, which are the superposition of background images and interference fringes, are recorded simultaneously on a single CCD. The pure target image and the pure interference fringes can be simply achieved from the summation or the difference of the two interferograms. Spectral and complete polarization information can be acquired by using the Fourier transform of the pure interference fringes. The principle and the configuration of the system are described here in this paper. The reconstruction processes of the target image and the full Stokes polarization spectra are theoretically analyzed and mathematically simulated. The results show that the system can availably separate background image from interference fringes of the target, achieving high-precision spectral reconstruction and effective extraction of the complete polarization information. Compared with the features of existing instruments, one of the salient features of the described model is to use the dual-intensity modulation, which can avoid mutual interference between the image and the fringes from the hardware and is conducive to the extraction of pure interference fringes with high signal-tonoise ratio (SNR). With this feature, the inadequacies on traditional spectral reconstruction, such as large computation, heavy data processing, and low accuracy of acquired information, are overcome. Moreover, the entrance slit in the front telescopic system is removed, which greatly increases the transmittance and flux of the incident light and improves the SNR of the interferogram. The modified Savart polariscope is used in the interference module. Its transverse shearsplitting principle further enlarges the field of view and increases the spectral resolution of the straight fringes. Thus, this design has the advantages of good stability, high spectrum, high sensitivity, large SNR, high-precision information reconstruction, and low-complexity data processing, as well as simultaneous detection of image, spectrum, and complete polarization information. This work will provide an important theoretical basis and practical instruction for developing new spectropolarimetric imaging technique and its engineering applications.
      通信作者: 于慧, 13934603474@nuc.edu.cn;ruizhanghy@163.com ; 张瑞, 13934603474@nuc.edu.cn;ruizhanghy@163.com
    • 基金项目: 国家国际科技合作专项(批准号:2013DFR10150)、国家自然科学基金(批准号:61127015,61471325,61505179)和山西省青年科技研究基金(批准号:2014021012)资助的课题.
      Corresponding author: Yu Hui, 13934603474@nuc.edu.cn;ruizhanghy@163.com ; Zhang Rui, 13934603474@nuc.edu.cn;ruizhanghy@163.com
    • Funds: Project supported by the Funds for International Cooperation and Exchange of the National Natural Science Foundation of China (Grant No. 2013DFR10150), the National Natural Science Foundation of China (Grant Nos. 61127015, 61471325, 61505179), and the Natural Science Foundation for Young Scientists of Shanxi Province, China (Grant No. 2014021012).
    [1]

    Persky M J 1995Rev.Sci.Instrum. 66 4763

    [2]

    Denes L J, Gottlieb M S, Kaminsky B 1998Opt.Eng. 37 1262

    [3]

    Oka K, Kato T 1999Opt.Lett. 24 1475

    [4]

    Tyo J S, Theodore S, Turner J 1999Proc.SPIE 3753 214

    [5]

    Dereniak E L, Hagen N A, Johnson W R 2003Proc.SPIE 5074 272

    [6]

    Miles B H, Kim L B 2004Proc.SPIE 5432 155

    [7]

    Stephen H J, Frank J I, Chris H 2006NASA Earth Science Technology Conference Proceeding

    [8]

    Tyo J S, Goldstein D L, Chenault D B, Shaw J A 2006Appl.Opt. 45 5453

    [9]

    Kudenov M W, Hagen N A, Dereniak E L, Gerhart G R 2007Opt.Express 15 12792

    [10]

    Gupta N 2008Proc.SPIE 6972 69720C

    [11]

    Gerhart G R 2008Opt.Eng. 47 0160011

    [12]

    Corrie V, Sampson R, Carven J 2008Proc.SPIE 7086 708604

    [13]

    Aumiller R W, Vandervlugt C, Dereniak E L 2008Proc.SPIE 6972 69720D

    [14]

    Gendre L, Foulonneau A, BiguL 2010Appl.Opt. 49 4687

    [15]

    Li J, Zhu J P, Wu H Y 2010Opt.Lett. 35 3784

    [16]

    Hyde M W, Schmidt J D, Havrilla M J, Cain S C 2010Opt.Lett. 35 3601

    [17]

    Jones J C, Kudenov M W, Stapelbroe M G, Dereniak E L 2011Appl.Opt. 50 1170

    [18]

    Mu T K, Zhang C M, Jia C L, Ren W Y 2012Opt.Express 20 18194

    [19]

    Meng X, Li G, Liu D 2013Opt.Lett. 38 778

    [20]

    Meng X, Li J, Liu D, Xu T, Liu D, Zhu R 2013Opt.Express 21 32071

    [21]

    Li J, Zhu J P, Qi C, Zheng C L, Gao B, Zhang Y Y, Hou X 2013Acta Phys.Sin. 62 044206(in Chinese)[李杰, 朱京平, 齐春, 郑传林, 高博, 张云尧, 侯洵2013物理学报62 044206]

    [22]

    Li J, Zhu J P, Qi C, Zheng C L, Gao B, Zhang Y Y, Hou X 2014Infrared Laser Eng. 43 574(in Chinese)[李杰, 朱京平, 齐春, 郑传林, 高博, 张云尧, 侯洵2014红外与激光工程43 574]

    [23]

    Mu T K, Zhang C M, Li Q W, Wei Y T, Chen Q Y, Jia C L 2014Acta Phys.Sin. 63 110704(in Chinese)[穆廷魁, 张淳民, 李祺伟, 魏宇童, 陈清颖, 贾辰凌2014物理学报63 110704]

    [24]

    Liu Y, Lo Y, Li C, Liao C 2015Opt.Commun. 336 295

    [25]

    Zhang R, Chen Y H, Li K W, Wang Z B, Li S W, Wang Y L, Zang M J 2016Acta Opt.Sin. 36 1011001(in Chinese)[张瑞, 陈友华, 李克武, 王志斌, 李世伟, 王耀利, 张敏娟2016光学学报36 1011001]

    [26]

    Kohzo H, Hirokimi S, Hiromichi Y 2005Proc.SPIE 5655 407

    [27]

    Zhao Y Q, Pan Q, Zhang H C 2006Proc.SPIE 6240 624007

    [28]

    Scharmer G B, Narayan G, Hillberg T 2008Astrophys.J. 689 169

    [29]

    Nathan J P, Andrew R D, Michael J, Joseph A 2011Opt.Express 19 18602

    [30]

    Zhao Y Q, Pan Q, Cheng Y M 2011Imaging Spectro-polarimetric Remote Sensing and Application(Beijing:National Defense Industry Press) pp16-19(in Chinese)[赵永强, 潘泉, 程咏梅2011成像偏振光谱遥感及应用(北京:国防工业出版社)第16-19页]

    [31]

    Li Y N, Sun X B, Mao Y N 2012Infrared Laser Eng. 41 205

    [32]

    Lou M J, Xing Q G, Shi P 2013Remote Sensing Technology and Application 28 627

    [33]

    Zhao J, Zhou F, Li H 2014Spacecraft Recovery and Remote Sensing 35 39

    [34]

    Xue Q S 2014Chin.J.Lasers 41 0316003

    [35]

    Liao Y B 2003Polarization Optics(Beijing:Science Press) p322(in Chinese)[廖延彪2003偏振光学(北京:科学出版社)第322页]

    [36]

    Wang X Q 2011Ph.D.Dissertation(Taiyuan:Shanxi University)(in Chinese)[王新全2011博士学位论文(西安:中国科学院西安光学精密机械研究所)]

    [37]

    Zhang C M, Jian X H 2010Opt.Lett. 35 366

  • [1]

    Persky M J 1995Rev.Sci.Instrum. 66 4763

    [2]

    Denes L J, Gottlieb M S, Kaminsky B 1998Opt.Eng. 37 1262

    [3]

    Oka K, Kato T 1999Opt.Lett. 24 1475

    [4]

    Tyo J S, Theodore S, Turner J 1999Proc.SPIE 3753 214

    [5]

    Dereniak E L, Hagen N A, Johnson W R 2003Proc.SPIE 5074 272

    [6]

    Miles B H, Kim L B 2004Proc.SPIE 5432 155

    [7]

    Stephen H J, Frank J I, Chris H 2006NASA Earth Science Technology Conference Proceeding

    [8]

    Tyo J S, Goldstein D L, Chenault D B, Shaw J A 2006Appl.Opt. 45 5453

    [9]

    Kudenov M W, Hagen N A, Dereniak E L, Gerhart G R 2007Opt.Express 15 12792

    [10]

    Gupta N 2008Proc.SPIE 6972 69720C

    [11]

    Gerhart G R 2008Opt.Eng. 47 0160011

    [12]

    Corrie V, Sampson R, Carven J 2008Proc.SPIE 7086 708604

    [13]

    Aumiller R W, Vandervlugt C, Dereniak E L 2008Proc.SPIE 6972 69720D

    [14]

    Gendre L, Foulonneau A, BiguL 2010Appl.Opt. 49 4687

    [15]

    Li J, Zhu J P, Wu H Y 2010Opt.Lett. 35 3784

    [16]

    Hyde M W, Schmidt J D, Havrilla M J, Cain S C 2010Opt.Lett. 35 3601

    [17]

    Jones J C, Kudenov M W, Stapelbroe M G, Dereniak E L 2011Appl.Opt. 50 1170

    [18]

    Mu T K, Zhang C M, Jia C L, Ren W Y 2012Opt.Express 20 18194

    [19]

    Meng X, Li G, Liu D 2013Opt.Lett. 38 778

    [20]

    Meng X, Li J, Liu D, Xu T, Liu D, Zhu R 2013Opt.Express 21 32071

    [21]

    Li J, Zhu J P, Qi C, Zheng C L, Gao B, Zhang Y Y, Hou X 2013Acta Phys.Sin. 62 044206(in Chinese)[李杰, 朱京平, 齐春, 郑传林, 高博, 张云尧, 侯洵2013物理学报62 044206]

    [22]

    Li J, Zhu J P, Qi C, Zheng C L, Gao B, Zhang Y Y, Hou X 2014Infrared Laser Eng. 43 574(in Chinese)[李杰, 朱京平, 齐春, 郑传林, 高博, 张云尧, 侯洵2014红外与激光工程43 574]

    [23]

    Mu T K, Zhang C M, Li Q W, Wei Y T, Chen Q Y, Jia C L 2014Acta Phys.Sin. 63 110704(in Chinese)[穆廷魁, 张淳民, 李祺伟, 魏宇童, 陈清颖, 贾辰凌2014物理学报63 110704]

    [24]

    Liu Y, Lo Y, Li C, Liao C 2015Opt.Commun. 336 295

    [25]

    Zhang R, Chen Y H, Li K W, Wang Z B, Li S W, Wang Y L, Zang M J 2016Acta Opt.Sin. 36 1011001(in Chinese)[张瑞, 陈友华, 李克武, 王志斌, 李世伟, 王耀利, 张敏娟2016光学学报36 1011001]

    [26]

    Kohzo H, Hirokimi S, Hiromichi Y 2005Proc.SPIE 5655 407

    [27]

    Zhao Y Q, Pan Q, Zhang H C 2006Proc.SPIE 6240 624007

    [28]

    Scharmer G B, Narayan G, Hillberg T 2008Astrophys.J. 689 169

    [29]

    Nathan J P, Andrew R D, Michael J, Joseph A 2011Opt.Express 19 18602

    [30]

    Zhao Y Q, Pan Q, Cheng Y M 2011Imaging Spectro-polarimetric Remote Sensing and Application(Beijing:National Defense Industry Press) pp16-19(in Chinese)[赵永强, 潘泉, 程咏梅2011成像偏振光谱遥感及应用(北京:国防工业出版社)第16-19页]

    [31]

    Li Y N, Sun X B, Mao Y N 2012Infrared Laser Eng. 41 205

    [32]

    Lou M J, Xing Q G, Shi P 2013Remote Sensing Technology and Application 28 627

    [33]

    Zhao J, Zhou F, Li H 2014Spacecraft Recovery and Remote Sensing 35 39

    [34]

    Xue Q S 2014Chin.J.Lasers 41 0316003

    [35]

    Liao Y B 2003Polarization Optics(Beijing:Science Press) p322(in Chinese)[廖延彪2003偏振光学(北京:科学出版社)第322页]

    [36]

    Wang X Q 2011Ph.D.Dissertation(Taiyuan:Shanxi University)(in Chinese)[王新全2011博士学位论文(西安:中国科学院西安光学精密机械研究所)]

    [37]

    Zhang C M, Jian X H 2010Opt.Lett. 35 366

  • [1] 杨君, 吴浩, 罗琨皓, 郭金川, 宗方轲. 抑制傅里叶变换法恢复的X射线相衬像中的伪影. 物理学报, 2021, 70(10): 104101. doi: 10.7498/aps.70.20201781
    [2] 王传位, 李宁, 黄孝龙, 翁春生. 基于多角度投影激光吸收光谱技术的两段式速度分布流场测试方法. 物理学报, 2019, 68(24): 247801. doi: 10.7498/aps.68.20191223
    [3] 王振, 杜艳君, 丁艳军, 彭志敏. 基于傅里叶变换的波长扫描腔衰荡光谱. 物理学报, 2019, 68(20): 204204. doi: 10.7498/aps.68.20191062
    [4] 殷玉龙, 孙晓兵, 宋茂新, 陈卫, 陈斐楠. 分振幅型全Stokes同时偏振成像系统波片相位延迟误差分析. 物理学报, 2019, 68(2): 024203. doi: 10.7498/aps.68.20181553
    [5] 于文婷, 张娟, 唐军. 动态突触、神经耦合与时间延迟对神经元发放的影响. 物理学报, 2017, 66(20): 200201. doi: 10.7498/aps.66.200201
    [6] 权乃承, 张淳民, 穆廷魁. 基于孔径分割与视场分割的通道型成像光谱偏振技术. 物理学报, 2016, 65(8): 080703. doi: 10.7498/aps.65.080703
    [7] 胡帅, 高太长, 李浩, 刘磊, 程天际, 张婷. 大气折射对可见光波段辐射传输特性的影响. 物理学报, 2015, 64(18): 184203. doi: 10.7498/aps.64.184203
    [8] 王华英, 于梦杰, 刘飞飞, 江亚男, 宋修法, 高亚飞. 基于同态信号处理的数字全息广义线性重建算法研究. 物理学报, 2013, 62(23): 234207. doi: 10.7498/aps.62.234207
    [9] 尹增谦, 武臣, 宫琬钰, 龚之珂, 王永杰. Voigt线型函数及其最大值的研究. 物理学报, 2013, 62(12): 123301. doi: 10.7498/aps.62.123301
    [10] 李杰, 朱京平, 齐春, 郑传林, 高博, 张云尧, 侯洵. 静态傅里叶变换超光谱全偏振成像技术. 物理学报, 2013, 62(4): 044206. doi: 10.7498/aps.62.044206
    [11] 吕金光, 梁静秋, 梁中翥. 空间调制傅里叶变换光谱仪分束器色散特性研究. 物理学报, 2012, 61(14): 140702. doi: 10.7498/aps.61.140702
    [12] 张淑娜, 罗震岳, 沈伟东, 刘旭, 章岳光. 利用白光干涉技术测量块状材料的群折射率. 物理学报, 2011, 60(1): 014221. doi: 10.7498/aps.60.014221
    [13] 张记全, 张延惠, 周慧, 贾正茂, 林圣路. 圆环弹子球量子谱的衍射效应. 物理学报, 2009, 58(9): 5965-5969. doi: 10.7498/aps.58.5965
    [14] 相里斌, 袁艳, 吕群波. 傅里叶变换光谱成像仪光谱传递函数研究. 物理学报, 2009, 58(8): 5399-5405. doi: 10.7498/aps.58.5399
    [15] 赵保银, 吕百达. 使用离焦望远镜系统合成轴上平顶光束的一种新方法. 物理学报, 2008, 57(5): 2919-2924. doi: 10.7498/aps.57.2919
    [16] 刘 斌, 金伟其, 董立泉. 热成像系统前置栅网结构的衍射效应分析. 物理学报, 2008, 57(9): 5578-5583. doi: 10.7498/aps.57.5578
    [17] 朱佩平, 王寯越, 吴自玉, 田玉莲, 贾全杰, 胡天斗, 巫 翔, 储旺盛, 黎 刚, 冼鼎昌. 内源全息术的原理和数学描述. 物理学报, 2004, 53(8): 2526-2533. doi: 10.7498/aps.53.2526
    [18] 谢红兰, 高鸿奕, 陈建文, 王寯越, 朱佩平, 熊诗圣, 洗鼎昌, 徐至展. 具有原子分辨率的x射线荧光全息术的数值模拟研究. 物理学报, 2003, 52(9): 2223-2228. doi: 10.7498/aps.52.2223
    [19] 刘 刚, 卢 柯, 梁志德. X射线线形的解卷分析与Bragg角的精确计算. 物理学报, 2000, 49(8): 1520-1523. doi: 10.7498/aps.49.1520
    [20] 金 鹏, 潘士宏, 梁基本. SIN+ GaAs结构中的Franz-Keldysh振荡的傅里叶变换研究. 物理学报, 2000, 49(9): 1821-1828. doi: 10.7498/aps.49.1821
计量
  • 文章访问数:  3047
  • PDF下载量:  222
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-23
  • 修回日期:  2016-11-30
  • 刊出日期:  2017-03-05

双强度调制静态傅里叶变换偏振成像光谱系统测量原理及仿真

    基金项目: 国家国际科技合作专项(批准号:2013DFR10150)、国家自然科学基金(批准号:61127015,61471325,61505179)和山西省青年科技研究基金(批准号:2014021012)资助的课题.

摘要: 为了抑制背景噪声,获得高信噪比的纯干涉条纹并实现图像、光谱和全偏振信息的同时测量,提出了一种基于双强度调制的静态傅里叶变换偏振成像光谱技术新方案.系统由前置望远系统、两个相位延迟器构成的偏振光谱调制模块、Wollaston棱镜构成的偏振分束器、Savart偏光镜和线偏振器构成的干涉模块以及CCD面阵探测器组成,可在单一探测器上同时获取两幅经过不同强度调制的全偏振干涉图,通过对两幅全偏振干涉图的简单加减运算,便可获得探测目标清晰的纯图像和高信噪比的纯干涉条纹.对该系统的图像和光谱偏振复原过程进行了理论分析和数值模拟,结果表明该系统可有效分离探测目标的背景图像和干涉图像,实现高精度的光谱复原和全偏振信息的有效提取,具有高稳定性、高光谱、高灵敏度、高信噪比、信息复原精度高及数据处理复杂度低等优点,为偏振干涉成像光谱技术的发展提供了新思路.

English Abstract

参考文献 (37)

目录

    /

    返回文章
    返回