搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

动态突触、神经耦合与时间延迟对神经元发放的影响

于文婷 张娟 唐军

引用本文:
Citation:

动态突触、神经耦合与时间延迟对神经元发放的影响

于文婷, 张娟, 唐军

Effects of dynamic synapses, neuronal coupling, and time delay on firing of neuron

Yu Wen-Ting, Zhang Juan, Tang Jun
PDF
导出引用
  • 神经元膜电位的受激发放在神经系统的信息传递中起着重要作用.基于一个受动态突触刺激的突触后神经元发放模型,采用数值模拟和傅里叶变换分析的方法研究了动态突触、神经耦合与时间延迟对突触后神经元发放的影响.结果发现:突触前神经元发放频率与Hodgkin-Huxley神经元的固有频率发生共振决定了突触后神经元发放的难易,特定频率范围内的电流刺激有利于神经元激发,动态突触输出的随机突触电流中这些电流刺激所占的比率在很大程度上影响了突触后神经元的发放次数;将突触后神经元换成神经网络后,网络中神经元之间的耦合可以促进神经元的发放,耦合中的时间延迟可以增强这种促进作用,但是不会改变神经耦合对神经元发放的促进模式.
    Neuronal firing plays a key role in the neuronal information transmission, and different neuronal firing patterns are reported, such as spiking, bursting. A number of neuron models are introduced to reproduce the firing patterns of single neuron or neuronal network. The key factors determining the firing pattern gain more and more attention in the study of neuron system, such as noise, network topology. Noise is able to induce sub-or super-threshold coherent neuronal firing easily, and a number of coherence resonances are reported in the noise induced firing. The network topology determines the synchronization of the firing patterns of the neuronal network, and the change of network topology may induce fruitful synchronization transitions. It is well known that synapses exhibit a high variability with a diverse origin during information transmission, such as the stochastic release of neurotransmitters, variations in chemical concentration through synapses, and spatial heterogeneity of synaptic response over dendrite tree. The collective effect of all of these factors might result in the notion of dynamic synapses. In reality, the neuronal network often involves time delay due to the ?nite signal propagation time in biological networks. Recently, neuronal networks with time delay have received considerable attention. Delay-sustained neuronal firing patterns may be relevant to neuronal networks for establishing a concept of collective information processing in the presence of delayed information transmission. According to the above-mentioned motivations, the firing dynamics of the single postsynapic neuron is investigated based on a simple postsynaptic neuron model by using numerical simulation and Fourier transform analysis. In this model, the postsynapic neuron receives dynamic synaptic currents from a population of presynaptic neurons. It is found that the firing rate resonance between the pre-and postsynaptic neuron determines the firing of the postsynaptic neuron. Stimulus currents in specific frequency range are easy to stimulate postsynaptic neuron firing. The random currents released from dynamic synapses determine the postsynaptic firing rate. Then the single postsynaptic neuron is extended to a neuronal network, in which 100 neurons connect to its 4 nearest neighbors regularly and receive delayed synaptic currents from connected neurons. All the neurons in the network receive the same dynamic synaptic currents from the presynaptic neurons. The results show that the synaptic coupling in the network is able to promote the neuron firing in the network, and time delay in the synaptic coupling could reinforce the promotion, but the mode of the promotion is not changed.
      通信作者: 唐军, tjuns1979@126.com
    • 基金项目: 中央高校基本科研业务费(批准号:2015XKMS080(TJ))资助的课题.
      Corresponding author: Tang Jun, tjuns1979@126.com
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 2015XKMS080(TJ)).
    [1]

    Hartmann G, Hauske G, Eckmiller R 1990 Parallel Processing in Neural Systems and Computers (Amsterdam:Computing and Computers)

    [2]

    Vanrullen R, Guyonneau R, Thorpe S J 2005 Trends Neurosci. 28 1

    [3]

    Pankratova E V, Polovinkin A V, Mosekilde E 2005 Eur. Phys. J. B 45 391

    [4]

    Levin J E, Miller J P 1996 Nature 380 165

    [5]

    Tang J, Liu T B, Ma J, Luo J M, Yang X Q 2016 Commun. Nonlinear Sci. Numer. Simulat. 32 262

    [6]

    Duan W L, Zeng C 2017 Appl. Math. Comput. 292 400

    [7]

    Yu W T, Tang J, Luo J M 2015 Acta Phys. Sin. 64 068702 (in Chinese)[于文婷, 唐军, 罗进明2015物理学报64 068702]

    [8]

    Yu W T, Tang J, Ma J, Luo J M, Yang X Q 2015 Eur. Biophys. J. 44 677

    [9]

    Zeng J, Zeng C, Xie Q, Guan L, Dong X, Yang F 2016 Physica A 462 1273

    [10]

    Johnson J B 1928 Phys. Rev. 32 97

    [11]

    Gu H, Zhao Z 2015 Plos One 10 e0138593

    [12]

    Qian Y 2014 Plos One 9 e96415

    [13]

    Guo D, Wang Q, Perc M 2012 Phys. Rev. E 85 878

    [14]

    Liu S, Wang Q, Fan D 2016 Front. Comput. Neurosc. 10 81

    [15]

    Mainen Z F, Sejnowski T J 1995 Science 268 1503

    [16]

    Jun M A, Tang J 2015 Sci. China:Technol. Sc. 58 2038

    [17]

    Chialvo D R, Longtin A, Mautllergerking J 1997 Phys. Rev. E 55 1798

    [18]

    Gammaitoni L, Hnggi P, Jung P, Marchesoni F 1998 Rev. Mod. Phys. 70 254

    [19]

    Guo D, Li C 2012 J. Theor. Biol. 308 105

    [20]

    Xiao W W, Gu H G, Liu M R 2016 Sci. China:Technol. Sci. 59 1

    [21]

    Liu F, Yu Y, Wang W 2001 Phys. Rev. E 63 051912

    [22]

    Sakumura Y, Aihara K 2002 Neural Proc. Lett. 16 235

    [23]

    Tang J, Ma J, Yi M, Xia H, Yang X Q 2011 Phys. Rev. E 83 046207

    [24]

    Yu W T, Tang J, Ma J, Yang X Q 2016 Europhys. Lett. 114 50006

    [25]

    Song X L, Wang C N, Ma J, Tang J 2015 Sci. China:Technol. Sci. 58 1

    [26]

    Markram H, Wang Y, Tsodyks M 1998 Proc. Natl. Acad. Sci. USA 95 5323

    [27]

    Braitenberg V, Schz A 1991 Anatomy of the Cortex:Statistics and Geometry (Berlin:Springer-Verlag)

    [28]

    Torres J J, Kappen J H 2013 Front. Comput. Neurosci. 7 30

    [29]

    Abbott L F, Varela J A, Sen K, Nelson S B 1997 Science 275 221

    [30]

    Torres J J, Pantic L, Kappen H J 2002 Phys. Rev. E 66 061910

    [31]

    Mishra J, Fellous J M, Sejnowski T J 2006 Neural Networks 19 1329

    [32]

    Fan D, Wang Z, Wang Q 2015 Commun. Nonlinear Sci. Numer. Simulat. 36 219

    [33]

    Uzuntarla M, Ozer M, Ileri U, Calim A, Torres J J 2015 Phys. Rev. E 92 062710

    [34]

    Qian Y, Zhao Y, Liu F, Huang X, Zhang Z, Mi Y 2013 Commun. Nonlinear. Sci. 18 3509

    [35]

    Qian Y, Liao X, Huang X, Mi Y, Zhang L, Hu G 2010 Phys. Rev. E 82 026107

    [36]

    Hodgkin A L, Huxley A F 1952 J. Physiol. 117 500

    [37]

    Tsodyks M V, Pawelzik K, Markram H 1998 Neural Comput. 10 821

    [38]

    Fitzpatrick J S, Akopian G, Walsh J P 2001 J. Neurophysiol. 85 2088

    [39]

    Tecuapetla F, Carrillo-Reid L, Bargas J, Galarraga E 2007 Proc. Natl. Acad. Sci. USA 104 10258

    [40]

    Ma Y, Hu H, Agmon A 2012 J. Neurosci. 32 983

    [41]

    Barroso-Flores J, Herrera-Valdez M A, Lopez-Huerta V G, Galarraga E 2015 J. Bargas Neural Plast. 2015 573543

    [42]

    Tsodyks M, Uziel A, Markram H 2000 J. Neurosci. 20 RC50

    [43]

    Tsodyks M V, Markram H 1997 Proc. Natl. Acad. Sci. USA 94 719

  • [1]

    Hartmann G, Hauske G, Eckmiller R 1990 Parallel Processing in Neural Systems and Computers (Amsterdam:Computing and Computers)

    [2]

    Vanrullen R, Guyonneau R, Thorpe S J 2005 Trends Neurosci. 28 1

    [3]

    Pankratova E V, Polovinkin A V, Mosekilde E 2005 Eur. Phys. J. B 45 391

    [4]

    Levin J E, Miller J P 1996 Nature 380 165

    [5]

    Tang J, Liu T B, Ma J, Luo J M, Yang X Q 2016 Commun. Nonlinear Sci. Numer. Simulat. 32 262

    [6]

    Duan W L, Zeng C 2017 Appl. Math. Comput. 292 400

    [7]

    Yu W T, Tang J, Luo J M 2015 Acta Phys. Sin. 64 068702 (in Chinese)[于文婷, 唐军, 罗进明2015物理学报64 068702]

    [8]

    Yu W T, Tang J, Ma J, Luo J M, Yang X Q 2015 Eur. Biophys. J. 44 677

    [9]

    Zeng J, Zeng C, Xie Q, Guan L, Dong X, Yang F 2016 Physica A 462 1273

    [10]

    Johnson J B 1928 Phys. Rev. 32 97

    [11]

    Gu H, Zhao Z 2015 Plos One 10 e0138593

    [12]

    Qian Y 2014 Plos One 9 e96415

    [13]

    Guo D, Wang Q, Perc M 2012 Phys. Rev. E 85 878

    [14]

    Liu S, Wang Q, Fan D 2016 Front. Comput. Neurosc. 10 81

    [15]

    Mainen Z F, Sejnowski T J 1995 Science 268 1503

    [16]

    Jun M A, Tang J 2015 Sci. China:Technol. Sc. 58 2038

    [17]

    Chialvo D R, Longtin A, Mautllergerking J 1997 Phys. Rev. E 55 1798

    [18]

    Gammaitoni L, Hnggi P, Jung P, Marchesoni F 1998 Rev. Mod. Phys. 70 254

    [19]

    Guo D, Li C 2012 J. Theor. Biol. 308 105

    [20]

    Xiao W W, Gu H G, Liu M R 2016 Sci. China:Technol. Sci. 59 1

    [21]

    Liu F, Yu Y, Wang W 2001 Phys. Rev. E 63 051912

    [22]

    Sakumura Y, Aihara K 2002 Neural Proc. Lett. 16 235

    [23]

    Tang J, Ma J, Yi M, Xia H, Yang X Q 2011 Phys. Rev. E 83 046207

    [24]

    Yu W T, Tang J, Ma J, Yang X Q 2016 Europhys. Lett. 114 50006

    [25]

    Song X L, Wang C N, Ma J, Tang J 2015 Sci. China:Technol. Sci. 58 1

    [26]

    Markram H, Wang Y, Tsodyks M 1998 Proc. Natl. Acad. Sci. USA 95 5323

    [27]

    Braitenberg V, Schz A 1991 Anatomy of the Cortex:Statistics and Geometry (Berlin:Springer-Verlag)

    [28]

    Torres J J, Kappen J H 2013 Front. Comput. Neurosci. 7 30

    [29]

    Abbott L F, Varela J A, Sen K, Nelson S B 1997 Science 275 221

    [30]

    Torres J J, Pantic L, Kappen H J 2002 Phys. Rev. E 66 061910

    [31]

    Mishra J, Fellous J M, Sejnowski T J 2006 Neural Networks 19 1329

    [32]

    Fan D, Wang Z, Wang Q 2015 Commun. Nonlinear Sci. Numer. Simulat. 36 219

    [33]

    Uzuntarla M, Ozer M, Ileri U, Calim A, Torres J J 2015 Phys. Rev. E 92 062710

    [34]

    Qian Y, Zhao Y, Liu F, Huang X, Zhang Z, Mi Y 2013 Commun. Nonlinear. Sci. 18 3509

    [35]

    Qian Y, Liao X, Huang X, Mi Y, Zhang L, Hu G 2010 Phys. Rev. E 82 026107

    [36]

    Hodgkin A L, Huxley A F 1952 J. Physiol. 117 500

    [37]

    Tsodyks M V, Pawelzik K, Markram H 1998 Neural Comput. 10 821

    [38]

    Fitzpatrick J S, Akopian G, Walsh J P 2001 J. Neurophysiol. 85 2088

    [39]

    Tecuapetla F, Carrillo-Reid L, Bargas J, Galarraga E 2007 Proc. Natl. Acad. Sci. USA 104 10258

    [40]

    Ma Y, Hu H, Agmon A 2012 J. Neurosci. 32 983

    [41]

    Barroso-Flores J, Herrera-Valdez M A, Lopez-Huerta V G, Galarraga E 2015 J. Bargas Neural Plast. 2015 573543

    [42]

    Tsodyks M, Uziel A, Markram H 2000 J. Neurosci. 20 RC50

    [43]

    Tsodyks M V, Markram H 1997 Proc. Natl. Acad. Sci. USA 94 719

  • [1] 王子硕, 刘磊, 刘晨博, 刘珂, 钟志, 单明广. 数字差分-积分快速相位解包裹算法研究. 物理学报, 2023, 72(18): 184201. doi: 10.7498/aps.72.20230473
    [2] 马少卿, 龚士香, 张微, 路承彪, 李小俚, 李英伟. 宽带微量太赫兹辐射促进神经元生长发育. 物理学报, 2022, 71(20): 208701. doi: 10.7498/aps.71.20220636
    [3] 王艳红, 王磊, 武京治. 神经微管振动产生纳米尺度内电磁场作用. 物理学报, 2021, 70(15): 158703. doi: 10.7498/aps.70.20210421
    [4] 杨君, 吴浩, 罗琨皓, 郭金川, 宗方轲. 抑制傅里叶变换法恢复的X射线相衬像中的伪影. 物理学报, 2021, 70(10): 104101. doi: 10.7498/aps.70.20201781
    [5] 张秀芳, 马军, 徐莹, 任国栋. 光电管耦合FitzHugh-Nagumo神经元的同步. 物理学报, 2021, 70(9): 090502. doi: 10.7498/aps.70.20201953
    [6] 王振, 杜艳君, 丁艳军, 彭志敏. 基于傅里叶变换的波长扫描腔衰荡光谱. 物理学报, 2019, 68(20): 204204. doi: 10.7498/aps.68.20191062
    [7] 于慧, 张瑞, 李克武, 薛锐, 王志斌. 双强度调制静态傅里叶变换偏振成像光谱系统测量原理及仿真. 物理学报, 2017, 66(5): 054201. doi: 10.7498/aps.66.054201
    [8] 于文婷, 唐军, 罗进明. 时间延迟对基因调节回路中生物记忆影响研究. 物理学报, 2015, 64(6): 068702. doi: 10.7498/aps.64.068702
    [9] 修春波, 刘畅, 郭富慧, 成怡, 罗菁. 迟滞混沌神经元/网络的控制策略及应用研究. 物理学报, 2015, 64(6): 060504. doi: 10.7498/aps.64.060504
    [10] 乔成功, 李伟恒, 唐国宁. 细胞外钾离子浓度延迟恢复对螺旋波的影响研究. 物理学报, 2014, 63(23): 238201. doi: 10.7498/aps.63.238201
    [11] 王付霞, 谢勇. "Hopf/homoclinic"簇放电和"SubHopf/homoclinic"簇放电之间的同步. 物理学报, 2013, 62(2): 020509. doi: 10.7498/aps.62.020509
    [12] 王兴元, 任小丽, 张永雷. 参数未知神经元模型的全阶与降阶最优同步. 物理学报, 2012, 61(6): 060508. doi: 10.7498/aps.61.060508
    [13] 陈军, 李春光. 禁忌学习神经元模型的电路设计及其动力学研究. 物理学报, 2011, 60(2): 020502. doi: 10.7498/aps.60.020502
    [14] 相里斌, 袁艳, 吕群波. 傅里叶变换光谱成像仪光谱传递函数研究. 物理学报, 2009, 58(8): 5399-5405. doi: 10.7498/aps.58.5399
    [15] 王慧巧, 俞连春, 陈勇. 离子通道噪声对神经元新陈代谢能量的影响. 物理学报, 2009, 58(7): 5070-5074. doi: 10.7498/aps.58.5070
    [16] 刘 斌, 金伟其, 董立泉. 热成像系统前置栅网结构的衍射效应分析. 物理学报, 2008, 57(9): 5578-5583. doi: 10.7498/aps.57.5578
    [17] 赵保银, 吕百达. 使用离焦望远镜系统合成轴上平顶光束的一种新方法. 物理学报, 2008, 57(5): 2919-2924. doi: 10.7498/aps.57.2919
    [18] 乔晓艳, 李 刚, 董有尔, 贺秉军. 弱激光诱导神经元兴奋性改变的实验研究. 物理学报, 2008, 57(2): 1259-1265. doi: 10.7498/aps.57.1259
    [19] 乔晓艳, 李 刚, 林 凌, 贺秉军. 弱激光对神经元钾离子通道特性影响的实验研究. 物理学报, 2007, 56(4): 2448-2455. doi: 10.7498/aps.56.2448
    [20] 金 鹏, 潘士宏, 梁基本. SIN+ GaAs结构中的Franz-Keldysh振荡的傅里叶变换研究. 物理学报, 2000, 49(9): 1821-1828. doi: 10.7498/aps.49.1821
计量
  • 文章访问数:  7180
  • PDF下载量:  441
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-15
  • 修回日期:  2017-06-29
  • 刊出日期:  2017-10-05

/

返回文章
返回