搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于孔径分割与视场分割的通道型成像光谱偏振技术

权乃承 张淳民 穆廷魁

引用本文:
Citation:

基于孔径分割与视场分割的通道型成像光谱偏振技术

权乃承, 张淳民, 穆廷魁

Channeled spectropolarimetry based on division of aperture and field of view

Quan Nai-Cheng, Zhang Chun-Min, Mu Ting-Kui
PDF
导出引用
  • 本文基于孔径分割、视场分割与通道光谱技术, 提出一种成像光谱偏振技术的新方案. 本方案在单一面阵探测器上同时获取经过不同强度调制的两对正反相干涉图, 四幅干涉图相加获取强度加倍的目标图像, 正反相干涉图相减获取纯干涉条纹, 纯干涉条纹相加减获取强度加倍的单通道干涉条纹, 对单通道干涉条纹进行傅里叶变换获取目标的光谱与偏振信息. 文中描述了方案的原理结构, 推导出了干涉强度的表达式, 并利用计算机仿真验证了方案的可行性. 为新型成像光谱偏振仪的设计和工程化应用提供了一种新思路.
    In order to obtain accurate image, spectrum and polarization state of target by the interferometric channeled spectropolarimeter, the interferogram and the image need to be separated. Although it can be achieved by digital image processing technology, heavy computations with approximation would be introduced. In the application of channeled spectropolarimetry, an inevitable crosstalk will be present between channels of the interferogram formed on the CCD. Spatial filtering in the optical path difference domain will generate a loss of spectral resolution and the distortion of the recovered spectrum. To overcome these drawbacks, a static imaging channeled spectropolarimeter based on division of aperture and field of view is presented. The aperture is divided by a polarization array, which consists of two polarizers with their transmission axes perpendicular to each other. The field of view is divided by a pair of lenses with the same focal lengths. The spectral modulation module is composed of an achromatic quarter wave plate, a retarder and a polarization array. The interference system consists of an achromatic half wave plate, a Wollaston prism, and a Savart polariscope. Two pairs of in-phase and anti-phase interferogram with different intensity modulations can be obtained simultaneously on a single detector array. The pure image of the target is acquired by the summation of the four interferograms. The background intensity is removed by the subtraction of the interferograms with in-phase and anti-phase, and the pure interference fringes can be acquired. By the summation and subtraction of the two pure interference fringes, the single channeled interference fringes corresponding to spectrum of intensity and linear polarization state can be obtained. Spectral and polarization information of the target are acquired by Fourier transform of the single channeled interference fringes. Compared with previous instruments, the described model has the significant advantage that the background intensity can be removed from the hardware of the layout, and thus avoiding the spatial filtering in the optical path difference domain. The obtained spectra have the same resolutions as those obtained from the interference system, and the distortion of the recovered spectrum can also be vanished. Since there is neither rotating part nor moving part, the system is relatively robust. In the present paper, the principle of the instrument is described, and the interference fringe intensity distribution formula is obtained and analyzed. The performance of the system is demonstrated through a numerical simulation. This work will provide an important theoretical basis and the practical instruction for designing a new type of imaging sepctropolarimeter and its engineering applications.
      通信作者: 张淳民, zcm@mail.xjtu.edu.cn
    • 基金项目: 国家高技术研究发展计划(批准号: 2012AA121101)、国家自然科学基金重点项目 (批准号: 41530422)、国家自然科学基金(批准号: 61540018, 61275184, 61405153)、国家科技重大专项 (批准号: 32-Y30B08-9001-13/15)和高等学校博士学科点专项科研基金(批准号: 20130201120047)资助的课题.
      Corresponding author: Zhang Chun-Min, zcm@mail.xjtu.edu.cn
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2012AA121101), the Key Program of the National Natural Science Foundation of China (Grant No. 41530422), the National Natural Science Foundation of China (Grant Nos. 61540018, 61275184, 61405153), the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 32-Y30B08-9001-13/15), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130201120047).
    [1]

    Joseph S T, Denis L G, David B C, Joseph A S 2006 Appl. Opt. 45 5453

    [2]

    Zhu B H, Zhang C M, Jian X H, Zeng W F 2012 Acta Phys. Sin. 61 090701 (in Chinese) [祝宝辉, 张淳民, 简小华, 曾文锋 2012 物理学报 61 090701]

    [3]

    Denes L J, Gottlieb M S, Kaminsky B 1998 Opt. Eng. 37 1262

    [4]

    Persky M J 1995 Rev. Sci. Instrum. 66 4763

    [5]

    Oka K, Kato T 1999 Opt. Lett. 24 1475

    [6]

    Tyo J S, Turner Jr T S 2001 Appl. Opt. 40 1450

    [7]

    Gupta N, Dahmani R, Choy S 2002 Opt. Eng. 41 1033

    [8]

    Gupta N, Voloshinov V 2004 Appl. Opt. 43 2752

    [9]

    Jones S, Iannarilli F, Kebabian P 2004 Opt. Exppress 12 6559

    [10]

    Avendao-Alejo M, Rosete-Aguilar M 2006 J. Opt. Soc. Am. A 23 926

    [11]

    Kevin W P, Theodore S T 1998 Proc. SPIE 3498 223

    [12]

    Tyo J S, Theodore S T 1999 Proc. SPIE 3753 214

    [13]

    Meng X, Li J, Liu D 2013 Opt. Lett. 38 778

    [14]

    Guyot S, Anastasiadou M, Delchelle E, Martino A D 2007 Opt. Express 15 7393

    [15]

    Zhang C M, Xiang L B, Zhao B C 2002 Opt. Comm. 203 21

    [16]

    Zhang C M, Xiangli B, Zhao B C 2004 Appl. Opt. 43 6090

    [17]

    Zhang C M, Xiang L B, Zhao B C 2008 Opt. Comm. 281 2050

    [18]

    Zhang C M, Jian X H 2010 Opt. Lett. 35 366

    [19]

    Zhang C M, Zhu H C, Zhao B C 2011 Opt. Express 19 9626

    [20]

    Zhang C M, He J 2006 Opt. Express 14 12561

    [21]

    Zhang C M, Xiang L B 2010 Interference Imaging Spectroscopy (Beijing: Science Press) p54 (in Chinese) [张淳民, 相里斌 2010 干涉成像光谱技术 (北京:科学出版社) 第54页]

    [22]

    Zhang C M, Liu N, Wu F Q 2010 Acta Phys. Sin. 59 949 (in Chinese) [张淳民, 刘宁, 吴福 2010 物理学报 59 949]

    [23]

    Mu T K, Zhang C M, Ren W Y, Zhang L, Zhu B H 2011 Acta Phys. Sin. 60 070704 (in Chinese) [穆廷魁, 张淳民, 任文艺, 张霖, 祝宝辉 2011 物理学报 60 070704]

    [24]

    Jones S H, Iannarilli F J, Kebabian P L 2004 Opt. Express 12 6559

    [25]

    Craven-Jones J, Kudenov M W, Stapelbroek M G 2011 Appl. Opt. 50 1170

    [26]

    Zhao Y Q, Zhang L, Pan Q 2009 Appl. Opt. 48 236

    [27]

    Kudenov M W, Hagen N A, Dereniak E L 2007 Opt. Express 15 12792

    [28]

    Snik F, Karalidi T, Keller C U 2009 Appl. Opt. 48 1337

    [29]

    Roy A, Rafert J B 2004 Proc. SPIE 5298 188

    [30]

    Zamora G, Truitt P, Nemeth S, Raman B, Soliz P 2004 Proc. SPIE 5314 138

    [31]

    Hashimoto M, Kawata S 1992 Appl. Opt. 31 6096

    [32]

    Padgett M J, Harvey A R, Duncan A J, Sibbett W 1994 Appl. Opt. 33 6035

  • [1]

    Joseph S T, Denis L G, David B C, Joseph A S 2006 Appl. Opt. 45 5453

    [2]

    Zhu B H, Zhang C M, Jian X H, Zeng W F 2012 Acta Phys. Sin. 61 090701 (in Chinese) [祝宝辉, 张淳民, 简小华, 曾文锋 2012 物理学报 61 090701]

    [3]

    Denes L J, Gottlieb M S, Kaminsky B 1998 Opt. Eng. 37 1262

    [4]

    Persky M J 1995 Rev. Sci. Instrum. 66 4763

    [5]

    Oka K, Kato T 1999 Opt. Lett. 24 1475

    [6]

    Tyo J S, Turner Jr T S 2001 Appl. Opt. 40 1450

    [7]

    Gupta N, Dahmani R, Choy S 2002 Opt. Eng. 41 1033

    [8]

    Gupta N, Voloshinov V 2004 Appl. Opt. 43 2752

    [9]

    Jones S, Iannarilli F, Kebabian P 2004 Opt. Exppress 12 6559

    [10]

    Avendao-Alejo M, Rosete-Aguilar M 2006 J. Opt. Soc. Am. A 23 926

    [11]

    Kevin W P, Theodore S T 1998 Proc. SPIE 3498 223

    [12]

    Tyo J S, Theodore S T 1999 Proc. SPIE 3753 214

    [13]

    Meng X, Li J, Liu D 2013 Opt. Lett. 38 778

    [14]

    Guyot S, Anastasiadou M, Delchelle E, Martino A D 2007 Opt. Express 15 7393

    [15]

    Zhang C M, Xiang L B, Zhao B C 2002 Opt. Comm. 203 21

    [16]

    Zhang C M, Xiangli B, Zhao B C 2004 Appl. Opt. 43 6090

    [17]

    Zhang C M, Xiang L B, Zhao B C 2008 Opt. Comm. 281 2050

    [18]

    Zhang C M, Jian X H 2010 Opt. Lett. 35 366

    [19]

    Zhang C M, Zhu H C, Zhao B C 2011 Opt. Express 19 9626

    [20]

    Zhang C M, He J 2006 Opt. Express 14 12561

    [21]

    Zhang C M, Xiang L B 2010 Interference Imaging Spectroscopy (Beijing: Science Press) p54 (in Chinese) [张淳民, 相里斌 2010 干涉成像光谱技术 (北京:科学出版社) 第54页]

    [22]

    Zhang C M, Liu N, Wu F Q 2010 Acta Phys. Sin. 59 949 (in Chinese) [张淳民, 刘宁, 吴福 2010 物理学报 59 949]

    [23]

    Mu T K, Zhang C M, Ren W Y, Zhang L, Zhu B H 2011 Acta Phys. Sin. 60 070704 (in Chinese) [穆廷魁, 张淳民, 任文艺, 张霖, 祝宝辉 2011 物理学报 60 070704]

    [24]

    Jones S H, Iannarilli F J, Kebabian P L 2004 Opt. Express 12 6559

    [25]

    Craven-Jones J, Kudenov M W, Stapelbroek M G 2011 Appl. Opt. 50 1170

    [26]

    Zhao Y Q, Zhang L, Pan Q 2009 Appl. Opt. 48 236

    [27]

    Kudenov M W, Hagen N A, Dereniak E L 2007 Opt. Express 15 12792

    [28]

    Snik F, Karalidi T, Keller C U 2009 Appl. Opt. 48 1337

    [29]

    Roy A, Rafert J B 2004 Proc. SPIE 5298 188

    [30]

    Zamora G, Truitt P, Nemeth S, Raman B, Soliz P 2004 Proc. SPIE 5314 138

    [31]

    Hashimoto M, Kawata S 1992 Appl. Opt. 31 6096

    [32]

    Padgett M J, Harvey A R, Duncan A J, Sibbett W 1994 Appl. Opt. 33 6035

  • [1] 刘劼, 陈伟, 杨秋琳, 穆根, 高昊, 申滔, 杨思华, 张振辉. 偏振光声成像技术的研究与发展. 物理学报, 2023, 72(20): 204202. doi: 10.7498/aps.72.20230900
    [2] 才啟胜, 黄旻, 韩炜, 刘怡轩, 路向宁. 大孔径空间外差干涉光谱成像技术多谱段成像仿真. 物理学报, 2018, 67(23): 234205. doi: 10.7498/aps.67.20180943
    [3] 钱鸿鹄, 孟炳寰, 袁银麟, 洪津, 张苗苗, 李双, 裘桢炜. 星载多角度偏振成像仪非偏通道全视场偏振效应测量及误差分析. 物理学报, 2017, 66(10): 100701. doi: 10.7498/aps.66.100701
    [4] 才啟胜, 黄旻, 韩炜, 丛麟骁, 路向宁. 外差式偏振干涉成像光谱技术研究. 物理学报, 2017, 66(16): 160702. doi: 10.7498/aps.66.160702
    [5] 于慧, 张瑞, 李克武, 薛锐, 王志斌. 双强度调制静态傅里叶变换偏振成像光谱系统测量原理及仿真. 物理学报, 2017, 66(5): 054201. doi: 10.7498/aps.66.054201
    [6] 李克武, 王志斌, 杨常青, 张瑞, 王耀利, 宋雁鹏. 基于声光滤光和液晶相位调谐的高光谱全偏振成像新技术. 物理学报, 2015, 64(14): 140702. doi: 10.7498/aps.64.140702
    [7] 李祺伟, 张淳民, 魏宇童, 陈清颖. 偏振型干涉成像光谱仪中Savart偏光镜通光孔径的研究. 物理学报, 2015, 64(22): 224206. doi: 10.7498/aps.64.224206
    [8] 谭林秋, 华灯鑫, 汪丽, 高飞, 狄慧鸽. Mach-Zehnder干涉仪条纹成像多普勒激光雷达风速反演及视场展宽技术. 物理学报, 2014, 63(22): 224205. doi: 10.7498/aps.63.224205
    [9] 李杰, 朱京平, 张云尧, 刘宏, 侯洵. 光谱分辨率可调的新型干涉成像光谱技术研究. 物理学报, 2013, 62(2): 024205. doi: 10.7498/aps.62.024205
    [10] 李杰, 朱京平, 齐春, 郑传林, 高博, 张云尧, 侯洵. 静态傅里叶变换超光谱全偏振成像技术. 物理学报, 2013, 62(4): 044206. doi: 10.7498/aps.62.044206
    [11] 简小华, 崔崤峣, 向永嘉, 韩志乐. 自适应多光谱光声成像技术研究. 物理学报, 2012, 61(21): 217801. doi: 10.7498/aps.61.217801
    [12] 祝宝辉, 张淳民, 简小华, 曾文锋. 时空混合调制型偏振干涉成像光谱仪的全视场偏振信息探测研究. 物理学报, 2012, 61(9): 090701. doi: 10.7498/aps.61.090701
    [13] 唐茜, 赵葆常, 邱跃洪, 张淳民, 穆廷魁. 基于光瞳分割和角剪切的成像偏振光谱技术. 物理学报, 2012, 61(23): 230701. doi: 10.7498/aps.61.230701
    [14] 穆廷魁, 张淳民, 任文艺, 张霖, 祝宝辉. 偏振干涉成像光谱仪的视场展宽设计与分析. 物理学报, 2011, 60(7): 070704. doi: 10.7498/aps.60.070704
    [15] 张淳民, 刘宁, 吴福全. 偏振干涉成像光谱仪中格兰-泰勒棱镜全视场角透过率的分析与计算. 物理学报, 2010, 59(2): 949-957. doi: 10.7498/aps.59.949
    [16] 吴海英, 张淳民, 赵葆常. 基于组合Wollaston棱镜成像光谱仪的视场扩大原理分析. 物理学报, 2009, 58(2): 930-935. doi: 10.7498/aps.58.930
    [17] 司福祺, 谢品华, Klaus-Peter Heue, 刘 诚, 彭夫敏, 刘文清. 超光谱成像差分吸收光谱技术研究. 物理学报, 2008, 57(9): 6018-6023. doi: 10.7498/aps.57.6018
    [18] 杜 娟, 张淳民, 赵葆常, 孙 尧. 稳态大视场偏振干涉成像光谱仪中视场补偿型Savart偏光镜透射率研究. 物理学报, 2008, 57(10): 6311-6318. doi: 10.7498/aps.57.6311
    [19] 封国林, 龚志强, 董文杰, 李建平. 基于启发式分割算法的气候突变检测研究. 物理学报, 2005, 54(11): 5494-5499. doi: 10.7498/aps.54.5494
    [20] 梁艳梅, 翟宏琛, 常胜江, 张思远. 基于最大隶属度原则的彩色图像分割方法. 物理学报, 2003, 52(11): 2655-2659. doi: 10.7498/aps.52.2655
计量
  • 文章访问数:  7050
  • PDF下载量:  274
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-30
  • 修回日期:  2016-01-13
  • 刊出日期:  2016-04-05

/

返回文章
返回