-
In order to obtain accurate image, spectrum and polarization state of target by the interferometric channeled spectropolarimeter, the interferogram and the image need to be separated. Although it can be achieved by digital image processing technology, heavy computations with approximation would be introduced. In the application of channeled spectropolarimetry, an inevitable crosstalk will be present between channels of the interferogram formed on the CCD. Spatial filtering in the optical path difference domain will generate a loss of spectral resolution and the distortion of the recovered spectrum. To overcome these drawbacks, a static imaging channeled spectropolarimeter based on division of aperture and field of view is presented. The aperture is divided by a polarization array, which consists of two polarizers with their transmission axes perpendicular to each other. The field of view is divided by a pair of lenses with the same focal lengths. The spectral modulation module is composed of an achromatic quarter wave plate, a retarder and a polarization array. The interference system consists of an achromatic half wave plate, a Wollaston prism, and a Savart polariscope. Two pairs of in-phase and anti-phase interferogram with different intensity modulations can be obtained simultaneously on a single detector array. The pure image of the target is acquired by the summation of the four interferograms. The background intensity is removed by the subtraction of the interferograms with in-phase and anti-phase, and the pure interference fringes can be acquired. By the summation and subtraction of the two pure interference fringes, the single channeled interference fringes corresponding to spectrum of intensity and linear polarization state can be obtained. Spectral and polarization information of the target are acquired by Fourier transform of the single channeled interference fringes. Compared with previous instruments, the described model has the significant advantage that the background intensity can be removed from the hardware of the layout, and thus avoiding the spatial filtering in the optical path difference domain. The obtained spectra have the same resolutions as those obtained from the interference system, and the distortion of the recovered spectrum can also be vanished. Since there is neither rotating part nor moving part, the system is relatively robust. In the present paper, the principle of the instrument is described, and the interference fringe intensity distribution formula is obtained and analyzed. The performance of the system is demonstrated through a numerical simulation. This work will provide an important theoretical basis and the practical instruction for designing a new type of imaging sepctropolarimeter and its engineering applications.
-
Keywords:
- imaging spectropolarimeter /
- channeled spectrometry /
- division of aperture /
- division of field of view
[1] Joseph S T, Denis L G, David B C, Joseph A S 2006 Appl. Opt. 45 5453
[2] Zhu B H, Zhang C M, Jian X H, Zeng W F 2012 Acta Phys. Sin. 61 090701 (in Chinese) [祝宝辉, 张淳民, 简小华, 曾文锋 2012 物理学报 61 090701]
[3] Denes L J, Gottlieb M S, Kaminsky B 1998 Opt. Eng. 37 1262
[4] Persky M J 1995 Rev. Sci. Instrum. 66 4763
[5] Oka K, Kato T 1999 Opt. Lett. 24 1475
[6] Tyo J S, Turner Jr T S 2001 Appl. Opt. 40 1450
[7] Gupta N, Dahmani R, Choy S 2002 Opt. Eng. 41 1033
[8] Gupta N, Voloshinov V 2004 Appl. Opt. 43 2752
[9] Jones S, Iannarilli F, Kebabian P 2004 Opt. Exppress 12 6559
[10] Avendao-Alejo M, Rosete-Aguilar M 2006 J. Opt. Soc. Am. A 23 926
[11] Kevin W P, Theodore S T 1998 Proc. SPIE 3498 223
[12] Tyo J S, Theodore S T 1999 Proc. SPIE 3753 214
[13] Meng X, Li J, Liu D 2013 Opt. Lett. 38 778
[14] Guyot S, Anastasiadou M, Delchelle E, Martino A D 2007 Opt. Express 15 7393
[15] Zhang C M, Xiang L B, Zhao B C 2002 Opt. Comm. 203 21
[16] Zhang C M, Xiangli B, Zhao B C 2004 Appl. Opt. 43 6090
[17] Zhang C M, Xiang L B, Zhao B C 2008 Opt. Comm. 281 2050
[18] Zhang C M, Jian X H 2010 Opt. Lett. 35 366
[19] Zhang C M, Zhu H C, Zhao B C 2011 Opt. Express 19 9626
[20] Zhang C M, He J 2006 Opt. Express 14 12561
[21] Zhang C M, Xiang L B 2010 Interference Imaging Spectroscopy (Beijing: Science Press) p54 (in Chinese) [张淳民, 相里斌 2010 干涉成像光谱技术 (北京:科学出版社) 第54页]
[22] Zhang C M, Liu N, Wu F Q 2010 Acta Phys. Sin. 59 949 (in Chinese) [张淳民, 刘宁, 吴福 2010 物理学报 59 949]
[23] Mu T K, Zhang C M, Ren W Y, Zhang L, Zhu B H 2011 Acta Phys. Sin. 60 070704 (in Chinese) [穆廷魁, 张淳民, 任文艺, 张霖, 祝宝辉 2011 物理学报 60 070704]
[24] Jones S H, Iannarilli F J, Kebabian P L 2004 Opt. Express 12 6559
[25] Craven-Jones J, Kudenov M W, Stapelbroek M G 2011 Appl. Opt. 50 1170
[26] Zhao Y Q, Zhang L, Pan Q 2009 Appl. Opt. 48 236
[27] Kudenov M W, Hagen N A, Dereniak E L 2007 Opt. Express 15 12792
[28] Snik F, Karalidi T, Keller C U 2009 Appl. Opt. 48 1337
[29] Roy A, Rafert J B 2004 Proc. SPIE 5298 188
[30] Zamora G, Truitt P, Nemeth S, Raman B, Soliz P 2004 Proc. SPIE 5314 138
[31] Hashimoto M, Kawata S 1992 Appl. Opt. 31 6096
[32] Padgett M J, Harvey A R, Duncan A J, Sibbett W 1994 Appl. Opt. 33 6035
-
[1] Joseph S T, Denis L G, David B C, Joseph A S 2006 Appl. Opt. 45 5453
[2] Zhu B H, Zhang C M, Jian X H, Zeng W F 2012 Acta Phys. Sin. 61 090701 (in Chinese) [祝宝辉, 张淳民, 简小华, 曾文锋 2012 物理学报 61 090701]
[3] Denes L J, Gottlieb M S, Kaminsky B 1998 Opt. Eng. 37 1262
[4] Persky M J 1995 Rev. Sci. Instrum. 66 4763
[5] Oka K, Kato T 1999 Opt. Lett. 24 1475
[6] Tyo J S, Turner Jr T S 2001 Appl. Opt. 40 1450
[7] Gupta N, Dahmani R, Choy S 2002 Opt. Eng. 41 1033
[8] Gupta N, Voloshinov V 2004 Appl. Opt. 43 2752
[9] Jones S, Iannarilli F, Kebabian P 2004 Opt. Exppress 12 6559
[10] Avendao-Alejo M, Rosete-Aguilar M 2006 J. Opt. Soc. Am. A 23 926
[11] Kevin W P, Theodore S T 1998 Proc. SPIE 3498 223
[12] Tyo J S, Theodore S T 1999 Proc. SPIE 3753 214
[13] Meng X, Li J, Liu D 2013 Opt. Lett. 38 778
[14] Guyot S, Anastasiadou M, Delchelle E, Martino A D 2007 Opt. Express 15 7393
[15] Zhang C M, Xiang L B, Zhao B C 2002 Opt. Comm. 203 21
[16] Zhang C M, Xiangli B, Zhao B C 2004 Appl. Opt. 43 6090
[17] Zhang C M, Xiang L B, Zhao B C 2008 Opt. Comm. 281 2050
[18] Zhang C M, Jian X H 2010 Opt. Lett. 35 366
[19] Zhang C M, Zhu H C, Zhao B C 2011 Opt. Express 19 9626
[20] Zhang C M, He J 2006 Opt. Express 14 12561
[21] Zhang C M, Xiang L B 2010 Interference Imaging Spectroscopy (Beijing: Science Press) p54 (in Chinese) [张淳民, 相里斌 2010 干涉成像光谱技术 (北京:科学出版社) 第54页]
[22] Zhang C M, Liu N, Wu F Q 2010 Acta Phys. Sin. 59 949 (in Chinese) [张淳民, 刘宁, 吴福 2010 物理学报 59 949]
[23] Mu T K, Zhang C M, Ren W Y, Zhang L, Zhu B H 2011 Acta Phys. Sin. 60 070704 (in Chinese) [穆廷魁, 张淳民, 任文艺, 张霖, 祝宝辉 2011 物理学报 60 070704]
[24] Jones S H, Iannarilli F J, Kebabian P L 2004 Opt. Express 12 6559
[25] Craven-Jones J, Kudenov M W, Stapelbroek M G 2011 Appl. Opt. 50 1170
[26] Zhao Y Q, Zhang L, Pan Q 2009 Appl. Opt. 48 236
[27] Kudenov M W, Hagen N A, Dereniak E L 2007 Opt. Express 15 12792
[28] Snik F, Karalidi T, Keller C U 2009 Appl. Opt. 48 1337
[29] Roy A, Rafert J B 2004 Proc. SPIE 5298 188
[30] Zamora G, Truitt P, Nemeth S, Raman B, Soliz P 2004 Proc. SPIE 5314 138
[31] Hashimoto M, Kawata S 1992 Appl. Opt. 31 6096
[32] Padgett M J, Harvey A R, Duncan A J, Sibbett W 1994 Appl. Opt. 33 6035
计量
- 文章访问数: 7050
- PDF下载量: 274
- 被引次数: 0