Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Diffusion part in terahertz complementary metal oxide semiconductor transistor detector model

Zhang Jing-Shui Kong Ling-Qin Dong Li-Quan Liu Ming Zuo Jian Zhang Cun-Lin Zhao Yue-Jin

Citation:

Diffusion part in terahertz complementary metal oxide semiconductor transistor detector model

Zhang Jing-Shui, Kong Ling-Qin, Dong Li-Quan, Liu Ming, Zuo Jian, Zhang Cun-Lin, Zhao Yue-Jin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper, we discuss the diffusion motion of carriers in the transistor channel in a terahertz frequency range, and propose an resistance-capacitance-inductance (RCL) model based on Boltzmann transport theory, and then put forward the rules to determine whether the diffusion part in the RCL model can be neglected for terahertz field-effect-transistor (FET) detectors. The traditional RCL model for FET detectors is based on classic kinetic theory. In this model only the drift and the scattering motion of the carrier density in transistor channel are considered, and the diffusion part is neglected without giving any explanation. To solve this problem, in this paper we adopt three steps: first, instead of classic kinetic theory, the equations of RCL transistor model including diffusion part are derived from Boltzmann transport equation, and by comparing the two models, the specific expression for the diffusion part is given. Second, the differences between the two models are calculated and simulated, including the conductivity in quasi-static mode and the current response in high frequency mode, with different gate voltages, temperatures and working frequencies. Third, combined with the 3 rules, the conditions to neglect the diffusion motion in the model are put forward. The results show that the diffusion motion of the carriers is caused by the inhomogeneity of the carrier density, affected by the gate voltage, the temperature and the changing speed of the carriers with respect to the local voltage. In quasi-static mode, the role of diffusion part will change with the gate voltage, and when the gate voltage equals threshold voltage (which is the best working point for transistor detector), the diffusion part cannot be neglected, for which the reason is that a larger gate voltage will lead to a smaller inhomogeneity of channel carrier density and then a weaker diffusion effect, thus the effect of diffusion conductance on the whole transistor conductance becomes smaller. For the terahertz-frequency working mode, the diffusion part will depend on temperature and frequency. With temperature increasing, the current responsivity difference caused by the diffusion part in the model slightly decreases; when the working frequency increases but below 1 THz, the diffusion part can be neglected; however, when the working frequency is above 1 THz, the transistor model should contain drift, scattering and diffusion part at the same time, for which the explanation is that when the temperature increases, the random thermal motion of the carrier becomes larger, thus the diffusion effect will be stronger; and if the frequency increases, the number of the carriers in one terminal of the channel will change faster, but due to the channel damping, the number of the carriers in another terminal will always be zero, thus the changing speed of the carrier density between the two terminals will be faster, then a larger inhomogeneity of carrier density and a stronger diffusion effect will appear. In conclusion, normally the transisitor works at the threshold gate voltage, and at this point, the diffusion effect in the channel will increase with working temperature and frequency increasing, thus the diffusion part in the model cannot be neglected. The results in this paper make a significant contribution to a more accurate terahertz transistor detector model.
      Corresponding author: Zhao Yue-Jin, yjzhao@bit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61377109).
    [1]

    Pfeiffer U R, Grzyb J, Sherry H, Cathelin A, Kaiser A 2013 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) Mainz, Germany, September 1-6, 2013 p1

    [2]

    Minoru F, Shuhei A 2015 IEICE Electron. Express 12 20152006

    [3]

    Lu J Q, Shur M S, Hesler J L 1998 Electron Dev. Lett. 19 373

    [4]

    Hadira R A, Sherry H, Grzyb J, Zhao Y 2012 IEEE J. Solid-State Circuit 47 2999

    [5]

    Ryu M W, Lee J S, Kim K S, Park K, Yang J R, Han S T, Kim K R 2016 IEEE Trans. Electron Dev. 63 1742

    [6]

    Grasser T, Tang T, Kosina H, Selberherr S 2003 Proc. IEEE 91 251

    [7]

    Preu S, Kim S, Verma R, Burke P G, Sherwin M S, Gossard A C 2012 J. Appl. Phys. 111 024502

    [8]

    Gutin A, Nahar S, Hella M, Shur M 2013 IEEE Trans. Terahertz Sci. Technol. 3 545

    [9]

    Ibrahim N Y, Rafat N H, Elnahwy S E A 2013 J. Infrared Millim. Terahertz Waves 34 606

    [10]

    Tan R B, Qin H, Sun J D, Zhang X Y, Zhang B S 2013 Appl. Phys. Lett. 103 173507

    [11]

    Zhao X H, Li C, Zhang P 2013 Acta Phys. Sin. 62 130506 (in Chinese) [赵晓辉, 蔡理, 张鹏 2013 物理学报 62 130506]

    [12]

    Gutin A, Ytterdal T, Muraviev A, Shur M 2015 Solid-State Electron. 104 75

    [13]

    Kim K S 2016 M. S. Thesis (Ulsan: Ulsan National Institute of Science and Technology)

    [14]

    Liu Y, He J, Chan M S, Du C X, Ye Y, Zhao W, Wu W, Deng W L, Wang W P 2014 Chin. Phys. B 23 097102

    [15]

    Dyakonov M I, Shur M S 1996 IEEE Trans. Electron Dev. 43 1640

    [16]

    Khmyrova I, Seijyou Y 2007 Appl. Phys. Lett. 91 143515

  • [1]

    Pfeiffer U R, Grzyb J, Sherry H, Cathelin A, Kaiser A 2013 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) Mainz, Germany, September 1-6, 2013 p1

    [2]

    Minoru F, Shuhei A 2015 IEICE Electron. Express 12 20152006

    [3]

    Lu J Q, Shur M S, Hesler J L 1998 Electron Dev. Lett. 19 373

    [4]

    Hadira R A, Sherry H, Grzyb J, Zhao Y 2012 IEEE J. Solid-State Circuit 47 2999

    [5]

    Ryu M W, Lee J S, Kim K S, Park K, Yang J R, Han S T, Kim K R 2016 IEEE Trans. Electron Dev. 63 1742

    [6]

    Grasser T, Tang T, Kosina H, Selberherr S 2003 Proc. IEEE 91 251

    [7]

    Preu S, Kim S, Verma R, Burke P G, Sherwin M S, Gossard A C 2012 J. Appl. Phys. 111 024502

    [8]

    Gutin A, Nahar S, Hella M, Shur M 2013 IEEE Trans. Terahertz Sci. Technol. 3 545

    [9]

    Ibrahim N Y, Rafat N H, Elnahwy S E A 2013 J. Infrared Millim. Terahertz Waves 34 606

    [10]

    Tan R B, Qin H, Sun J D, Zhang X Y, Zhang B S 2013 Appl. Phys. Lett. 103 173507

    [11]

    Zhao X H, Li C, Zhang P 2013 Acta Phys. Sin. 62 130506 (in Chinese) [赵晓辉, 蔡理, 张鹏 2013 物理学报 62 130506]

    [12]

    Gutin A, Ytterdal T, Muraviev A, Shur M 2015 Solid-State Electron. 104 75

    [13]

    Kim K S 2016 M. S. Thesis (Ulsan: Ulsan National Institute of Science and Technology)

    [14]

    Liu Y, He J, Chan M S, Du C X, Ye Y, Zhao W, Wu W, Deng W L, Wang W P 2014 Chin. Phys. B 23 097102

    [15]

    Dyakonov M I, Shur M S 1996 IEEE Trans. Electron Dev. 43 1640

    [16]

    Khmyrova I, Seijyou Y 2007 Appl. Phys. Lett. 91 143515

  • [1] Xu Zhen, Luo Man, Li Ji-Ning, Liu Long-Hai, Xu De-Gang. Experimental study and simulation analysis of transmission characteristics of terahertz metal wire waveguides. Acta Physica Sinica, 2024, 73(11): 114203. doi: 10.7498/aps.73.20240279
    [2] Wang Jing-Li, Dong Xian-Chao, Yin Liang, Yang Zhi-Xiong, Wan Hong-Dan, Chen He-Ming, Zhong Kai. Vanadium dioxide based terahertz dual-frequency multi-function coding metasurface. Acta Physica Sinica, 2023, 72(9): 098101. doi: 10.7498/aps.72.20222321
    [3] Ge Hong-Yi, Li Li, Jiang Yu-Ying, Li Guang-Ming, Wang Fei, Lü Ming, Zhang Yuan, Li Zhi. Double-opening metal ring based terahertz metamaterial absorber sensor. Acta Physica Sinica, 2022, 71(10): 108701. doi: 10.7498/aps.71.20212303
    [4] Zhu Zhi, Yan Shao-Jian, Duan Tong-Chuan, Zhao Yan, Sun Ting-Yu, Li Yang-Mei. THz electromagnetic wave regulated dissolution of methane hydrate. Acta Physica Sinica, 2021, 70(24): 248705. doi: 10.7498/aps.70.20211779
    [5] Zhou Kang, Li Hua, Wan Wen-Jian, Li Zi-Ping, Cao Jun-Cheng. Group velocity dispersion analysis of terahertz quantum cascade laser frequency comb. Acta Physica Sinica, 2019, 68(10): 109501. doi: 10.7498/aps.68.20190217
    [6] Zhang Zhen-Zhen, Li Hua, Cao Jun-Cheng. Ultrafast terahertz detectors. Acta Physica Sinica, 2018, 67(9): 090702. doi: 10.7498/aps.67.20180226
    [7] Mou Yuan, Wu Zhen-Sen, Zhang Geng, Gao Yan-Qing, Yang Zhi-Qiang. Establishment of THz dispersion model of metals based on Kramers-Kronig relation. Acta Physica Sinica, 2017, 66(12): 120202. doi: 10.7498/aps.66.120202
    [8] Yang Lei, Fan Fei, Chen Meng, Zhang Xuan-Zhou, Chang Sheng-Jiang. Multifunctional metasurfaces for terahertz polarization controller. Acta Physica Sinica, 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [9] Chen Ze-Zhang. Theoretical study on the polarizability properties of liquid crystal in the THz range. Acta Physica Sinica, 2016, 65(14): 143101. doi: 10.7498/aps.65.143101
    [10] Shi Sheng-Cai, Li Jing, Zhang Wen, Miao Wei. Terahertz high-sensitivity superconducting detectors. Acta Physica Sinica, 2015, 64(22): 228501. doi: 10.7498/aps.64.228501
    [11] Zhang Hui-Yun, Liu Meng, Zhang Yu-Ping, Shen Duan-Long, Wu Zhi-Xin, Yin Yi-Heng, Li De-Hua. Research of continuous wave pumping waveguide to generate terahertz laser. Acta Physica Sinica, 2014, 63(2): 020702. doi: 10.7498/aps.63.020702
    [12] Liang Da-Chuan, Wei Ming-Gui, Gu Jian-Qiang, Yin Zhi-Ping, Ouyang Chun-Mei, Tian Zhen, He Ming-Xia, Han Jia-Guang, Zhang Wei-Li. Broad-band time domain terahertz radar cross-section research in scale models. Acta Physica Sinica, 2014, 63(21): 214102. doi: 10.7498/aps.63.214102
    [13] Zhang Hui-Yun, Liu Meng, Zhang Yu-Ping, He Zhi-Hong, Shen Duan-Long, Wu Zhi-Xin, Yin Yi-Heng, Li De-Hua. Improvement of the output power of optical pumping THz lasers based on the theory of vibrational relaxation. Acta Physica Sinica, 2014, 63(1): 010702. doi: 10.7498/aps.63.010702
    [14] Han Yu, Yuan Xue-Song, Ma Chun-Yan, Yan Yang. Study of a gyrotron oscillator with corrugated interaction cavity. Acta Physica Sinica, 2012, 61(6): 064102. doi: 10.7498/aps.61.064102
    [15] Hu Hai-Feng, Cai Li-Kang, Bai Wen-Li, Zhang Jing, Wang Li-Na, Song Guo-Feng. Simulation research on the control of terahertz beam direction by surface plasmon. Acta Physica Sinica, 2011, 60(1): 014220. doi: 10.7498/aps.60.014220
    [16] Zhao Guo-Zhong, Wang Xin-Qiang, Wang Hai-Yan. Terahertz radiations from narrow band gap of semiconductor irradiated by femtosecond pulses with different pump intensities. Acta Physica Sinica, 2011, 60(4): 043202. doi: 10.7498/aps.60.043202
    [17] Zhang Rong, Guo Xu-Guang, Cao Jun-Cheng. Simulation and optimization of grating optical coupling of terahertz quantum well photodetector. Acta Physica Sinica, 2011, 60(5): 050705. doi: 10.7498/aps.60.050705
    [18] Fan Guo-Li, Jiang Yue-Song, Liu Li, Li Fang. Analysis on high frequency performance of THz GaAs Schottky mixer diode. Acta Physica Sinica, 2010, 59(8): 5374-5381. doi: 10.7498/aps.59.5374
    [19] Li Wen-Ping, Zhang Ya-Xin, Liu Sheng-Gang, Liu Da-Gang. Kinetic theory of a novel THZ gyrotron with three-mirror quasi-optical cavity. Acta Physica Sinica, 2008, 57(5): 2875-2881. doi: 10.7498/aps.57.2875
    [20] Ma Shi-Hua, Shi Yu-Lei, Xu Xin-Long, Yan Wei, Yang Yu-Ping, Wang Li. Low-frequency collective vibrational modes of asparagine by terahertz time-domain spectroscopy. Acta Physica Sinica, 2006, 55(8): 4091-4095. doi: 10.7498/aps.55.4091
Metrics
  • Abstract views:  6274
  • PDF Downloads:  123
  • Cited By: 0
Publishing process
  • Received Date:  01 March 2017
  • Accepted Date:  05 April 2017
  • Published Online:  05 June 2017

/

返回文章
返回