Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental study and simulation analysis of transmission characteristics of terahertz metal wire waveguides

Xu Zhen Luo Man Li Ji-Ning Liu Long-Hai Xu De-Gang

Citation:

Experimental study and simulation analysis of transmission characteristics of terahertz metal wire waveguides

Xu Zhen, Luo Man, Li Ji-Ning, Liu Long-Hai, Xu De-Gang
PDF
HTML
Get Citation
  • Terahertz waves are between microwave and infrared, and currently, terahertz waves are mainly transmitted in free space. Metal wire waveguides have been widely studied due to their outstanding transmission characteristics such as low loss and low dispersion. In this study, copper wires are selected as the research samples based on the skin depth of terahertz waves on different metal wire surfaces. An adjustable metal wire waveguide transmission characteristic testing optical path is studied based on the terahertz time-domain spectroscopy system. The time-domain signals transmitted through single/double copper wires with different radii, lengths, and port states are collected. Then, the finite element method is used to analyze the transmission characteristics of single/double copper wires with different radii, lengths, and port states, and the transmission characteristics of single/double copper wires with different degrees of deformation in the air domain are simulated. The experimental results indicate that the transmission loss increases with copper wire length increasing, and the thinner the metal wire, the slower the transmission speed is. The influence of port shape on transmission characteristics is not so significant as that of length variation. The thicker the bimetallic wire, the faster the transmission speed is. The simulation results show that when terahertz waves are transmitted on a single metal wire, the electric field is mainly distributed on the surface of the metal wire, and the finer the metal wire, the smaller the mode field area of the surface plasmon is. When the metal line becomes elliptical, the mode field is mainly distributed on both ends of the major axis; When terahertz waves are transmitted in bimetallic wires, the mode field is mainly distributed between the two wires, and the farther the distance, the smaller the mode field area is. In this work, the terahertz transmission characteristics of single wires and bimetallic wires are studied by combining experimental method and simulation analysis, providing a reference for the subsequent development of efficient terahertz metal waveguides.
      Corresponding author: Li Ji-Ning, jiningli@tju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U22A20123, 62175182, 62275193, U22A20353).
    [1]

    Sharma V, Garg N , Sharma S, Sharma S, Bhatia V 2024 Front. Signal Process. 3 1297945

    [2]

    Hu L, Yang Z Q, Fang Y, Li Q F, Miao Y X, Lu X F, Sun X C, Zhang Y X 2023 Micromachines 14 1921Google Scholar

    [3]

    格根塔娜, 钟凯, 乔鸿展, 张献中, 李吉宁, 徐德刚, 姚建铨 2023 物理学报 72 184101Google Scholar

    Gegen T N, Zhong K, Qiao H Z, Zhang X Z. Li J N, Xu D G, Yao J Q 2023 Acta Phys. Sin. 72 184101Google Scholar

    [4]

    Mohammadzadeh S, Keil A, Kocybik M, Schwenson L M, Liebermeister L, Kohlhaas R, Globisch B, Freymann G V, Seewig J, Friederich F 2023 Laser Photonics Rev. 17 2300396Google Scholar

    [5]

    Pałka N , Kamiński K , Maciejewski M , Pacek D, Świderski W 2024 Infrared Phys. Technol. 137 105163

    [6]

    陶磊 2021 中国安全防范技术与应用 110 11Google Scholar

    Tao L 2021 China Security Protection Technology and Application 110 11Google Scholar

    [7]

    Yang X, Wu T, Zhang L, Yang D, Wang N N, Song B, Gao X B 2019 Signal Process. 160 202Google Scholar

    [8]

    向星诚, 马海贝, 王磊, 田达, 张伟, 张彩虹, 吴敬波, 范克彬, 金飚兵, 陈健, 吴培亨 2023 物理学报 72 128701Google Scholar

    Xiang X C, Ma H B, Wang L, Tian D, Zhang W, Zhang C H, Wu J B, Fan K B, Jin B B, Chen J, Wu P H 2023 Acta Phys. Sin. 72 128701Google Scholar

    [9]

    张向, 王玥, 张婉莹, 张晓菊, 罗帆, 宋博晨, 张狂, 施卫 2024 物理学报 73 026102Google Scholar

    Zhang X, Wang Y, Wang W Y, Zhang, X J, Luo F, Song B C, Zhang K, Shi W 2024 Acta Phys Sin 73 026102Google Scholar

    [10]

    王与烨, 蒋博周, 徐德刚, 王国强, 王一凡, 姚建铨 2021 光学学报 41 0711001Google Scholar

    Wang Y Y, Jiang B Z, Xu D G, Wang G Q, Wang Y F, Yao J Q 2021 Acta Opt. Sin. 41 0711001Google Scholar

    [11]

    郑转平, 刘榆杭, 赵帅宇, 蒋杰伟, 卢乐 2023 物理学报 72 173201Google Scholar

    Zheng Z P, Liu H Y, Zhao S Y, Jiang J W, Lu L 2023 Acta Phys. Sin. 72 173201Google Scholar

    [12]

    Jin W, Hiroki N, Kenji S, Yuichi Y, Kenji S, Toshihiko K 2021 ECS Meeting Abstracts Meeting Abstracts 61 1637Google Scholar

    [13]

    Gregory B, Aleksandra G, Fedor K, Ilya L, Kirill M, Sergey V, Vyacheslav V 2021 6th international Conference on Metamaterials and Nanophotonics Tbilisi, Georgia September 13–17, 2021 p012162

    [14]

    王长, 郑永辉, 谭智勇, 何晓勇, 曹俊诚 2022 太赫兹科学与电子信息学报 20 241

    Wang C, Zheng Y H, Tan Z Y, He X Y, Cao J C 2022 J. Terahertz Sci. Electron. Inf. Technol. 20 241

    [15]

    刘燕 2019 博士学位论文(成都: 电子科技大学)

    Liu Y 2019 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China

    [16]

    Wang K L, Mittleman D 2004 Nature 432 376Google Scholar

    [17]

    Cao Q, Jahns J 2005 Opt. Express 13 511Google Scholar

    [18]

    Mbonye M K, Astley V, Chan W L, Deibel J A, Mittleman D M 2007 Conference on Lasers and Electro-Optics Baltimore, MD, USA, May 6–11, 2007 p1

    [19]

    李爽 2013 硕士学位论文 (上海: 上海大学)

    Li S 2013 M. S. Thesis (Shanghai: Shanghai University

    [20]

    Maier S A, Andrews S R, Moreno M L, García F J 2006 Phys. Rev. Lett. 97 176805Google Scholar

    [21]

    Liang H W, Ruan S C, Zhang M, Su H 2010 Opt. Commun. 283 262Google Scholar

    [22]

    Balistreri G, Tomasino A, Dong J L, Yurtsever A, Stivala S, Azaña J, Morandotti R 2021 Laser Photonics Rev. 15 2100051Google Scholar

    [23]

    高华 2016 博士学位论文(上海: 上海大学)

    Gao H 2016 Ph. D. Dissertation (Shanghai: Shanghai University

    [24]

    钟任斌 2012 博士学位论文(成都: 电子科技大学)

    Zhong R B 2012 Ph. D. Dissertation(Chengdu: University of Electronic Science and Technology of China

  • 图 1  五种常见金属在太赫兹波段的趋肤深度随频率的变化关系

    Figure 1.  Frequency dependent relationship of skin depth of five common metals in the terahertz band.

    图 2  太赫兹波导传输特性测试系统原理图

    Figure 2.  Schematic diagram of terahertz waveguide transmission characteristic testing system.

    图 3  太赫兹波导时域传输特性测试系统

    Figure 3.  Time domain transmission characteristics testing system for terahertz waveguides.

    图 4  铜线样品实物图 (a)不同长度铜线样品; (b)不同直径铜线样品; (c)不同端口的铜线样品; (d)双铜线样品

    Figure 4.  Physical image of copper wire sample: (a) Copper wire samples of different lengths; (b) copper wire samples of different diameters; (c) copper wire samples of different ports; (d) double copper wire sample.

    图 5  不同长度铜线样品传输的太赫兹时域信号

    Figure 5.  Terahertz time-domain signals transmitted by copper wire samples of different lengths.

    图 6  不同直径铜线样品传输的太赫兹信号 (a) 时域信号; (b) 信号相移图

    Figure 6.  Time domain signals of terahertz signals transmitted by copper wire samples with different diameters: (a) Time domain signal; (b) signal phase shift diagram.

    图 7  不同端口状态铜线样品传输的太赫兹时域信号 (a) 直径为1.6 mm铜线传输的太赫兹时域信号; (b) 直径为1.8 mm铜线传输的太赫兹时域信号; (c) 两种端口铜线传输的太赫兹时域相移

    Figure 7.  Terahertz time-domain signals transmitted by copper wire samples with different port states: (a) Terahertz time-domain signals transmitted by copper wire with a diameter of 1.6 mm; (b) terahertz time-domain signal transmitted by a copper wire with a diameter of 1.8 mm; (c) terahertz time-domain phase shift in copper wire transmission with two different ports.

    图 8  双金属线太赫兹时域传输特性 (a) 测试时样品状态; (b) 双金属线传输的太赫兹时域信号

    Figure 8.  Terahertz time-domain transmission characteristics of bimetallic wires: (a) Sample state during testing; (b) terahertz time-domain signals transmitted by bimetallic wire lines.

    图 9  半径400 μm金属线横截面模场分布 (a) 圆形截面上Er分布; (b) Ez强度分布; (c) Er强度沿径向变化曲线

    Figure 9.  Mode field distribution on the cross-section of a metal wire with a radius of 400 m: (a) Er distribution on a circular cross-section; (b) Ez intensity distribution; (c) Er intensity variation curve along the radial direction.

    图 10  频率为0.5 THz时金属线表面模场面积分布

    Figure 10.  Distribution of surface mode field area of metal wire at frequency of 0.5 THz.

    图 11  椭圆金属线传输特性 (a) 椭圆金属线模场分布; (b) 品质因数变化趋势

    Figure 11.  Transmission characteristics of elliptical metal lines: (a) Mode field distribution of elliptical metal lines; (b) trend of quality factor changes.

    图 12  椭圆金属线截面周长不变时传输特性 (a) 品质因数变化曲线; (b) 模场面积变化曲线

    Figure 12.  Transmission characteristics: (a) Quality factor variation curve of elliptical metal wire with constant cross-sectional perimeter; (b) mode field area variation curve.

    图 13  双金属线波导模型

    Figure 13.  Model of bimetallic waveguide.

    图 14  双金属线波导模场分布 (a) 双金属线波导截面半轴变化; (b) 双金属线波导距离变化; (c) 双金属线波导半径变化

    Figure 14.  Distribution of mode field in bimetallic waveguide: (a) Half axis variation of cross-section of bimetallic waveguide; (b) distance variation of bimetallic waveguide; (c) changes in the radius of bimetallic waveguide.

  • [1]

    Sharma V, Garg N , Sharma S, Sharma S, Bhatia V 2024 Front. Signal Process. 3 1297945

    [2]

    Hu L, Yang Z Q, Fang Y, Li Q F, Miao Y X, Lu X F, Sun X C, Zhang Y X 2023 Micromachines 14 1921Google Scholar

    [3]

    格根塔娜, 钟凯, 乔鸿展, 张献中, 李吉宁, 徐德刚, 姚建铨 2023 物理学报 72 184101Google Scholar

    Gegen T N, Zhong K, Qiao H Z, Zhang X Z. Li J N, Xu D G, Yao J Q 2023 Acta Phys. Sin. 72 184101Google Scholar

    [4]

    Mohammadzadeh S, Keil A, Kocybik M, Schwenson L M, Liebermeister L, Kohlhaas R, Globisch B, Freymann G V, Seewig J, Friederich F 2023 Laser Photonics Rev. 17 2300396Google Scholar

    [5]

    Pałka N , Kamiński K , Maciejewski M , Pacek D, Świderski W 2024 Infrared Phys. Technol. 137 105163

    [6]

    陶磊 2021 中国安全防范技术与应用 110 11Google Scholar

    Tao L 2021 China Security Protection Technology and Application 110 11Google Scholar

    [7]

    Yang X, Wu T, Zhang L, Yang D, Wang N N, Song B, Gao X B 2019 Signal Process. 160 202Google Scholar

    [8]

    向星诚, 马海贝, 王磊, 田达, 张伟, 张彩虹, 吴敬波, 范克彬, 金飚兵, 陈健, 吴培亨 2023 物理学报 72 128701Google Scholar

    Xiang X C, Ma H B, Wang L, Tian D, Zhang W, Zhang C H, Wu J B, Fan K B, Jin B B, Chen J, Wu P H 2023 Acta Phys. Sin. 72 128701Google Scholar

    [9]

    张向, 王玥, 张婉莹, 张晓菊, 罗帆, 宋博晨, 张狂, 施卫 2024 物理学报 73 026102Google Scholar

    Zhang X, Wang Y, Wang W Y, Zhang, X J, Luo F, Song B C, Zhang K, Shi W 2024 Acta Phys Sin 73 026102Google Scholar

    [10]

    王与烨, 蒋博周, 徐德刚, 王国强, 王一凡, 姚建铨 2021 光学学报 41 0711001Google Scholar

    Wang Y Y, Jiang B Z, Xu D G, Wang G Q, Wang Y F, Yao J Q 2021 Acta Opt. Sin. 41 0711001Google Scholar

    [11]

    郑转平, 刘榆杭, 赵帅宇, 蒋杰伟, 卢乐 2023 物理学报 72 173201Google Scholar

    Zheng Z P, Liu H Y, Zhao S Y, Jiang J W, Lu L 2023 Acta Phys. Sin. 72 173201Google Scholar

    [12]

    Jin W, Hiroki N, Kenji S, Yuichi Y, Kenji S, Toshihiko K 2021 ECS Meeting Abstracts Meeting Abstracts 61 1637Google Scholar

    [13]

    Gregory B, Aleksandra G, Fedor K, Ilya L, Kirill M, Sergey V, Vyacheslav V 2021 6th international Conference on Metamaterials and Nanophotonics Tbilisi, Georgia September 13–17, 2021 p012162

    [14]

    王长, 郑永辉, 谭智勇, 何晓勇, 曹俊诚 2022 太赫兹科学与电子信息学报 20 241

    Wang C, Zheng Y H, Tan Z Y, He X Y, Cao J C 2022 J. Terahertz Sci. Electron. Inf. Technol. 20 241

    [15]

    刘燕 2019 博士学位论文(成都: 电子科技大学)

    Liu Y 2019 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China

    [16]

    Wang K L, Mittleman D 2004 Nature 432 376Google Scholar

    [17]

    Cao Q, Jahns J 2005 Opt. Express 13 511Google Scholar

    [18]

    Mbonye M K, Astley V, Chan W L, Deibel J A, Mittleman D M 2007 Conference on Lasers and Electro-Optics Baltimore, MD, USA, May 6–11, 2007 p1

    [19]

    李爽 2013 硕士学位论文 (上海: 上海大学)

    Li S 2013 M. S. Thesis (Shanghai: Shanghai University

    [20]

    Maier S A, Andrews S R, Moreno M L, García F J 2006 Phys. Rev. Lett. 97 176805Google Scholar

    [21]

    Liang H W, Ruan S C, Zhang M, Su H 2010 Opt. Commun. 283 262Google Scholar

    [22]

    Balistreri G, Tomasino A, Dong J L, Yurtsever A, Stivala S, Azaña J, Morandotti R 2021 Laser Photonics Rev. 15 2100051Google Scholar

    [23]

    高华 2016 博士学位论文(上海: 上海大学)

    Gao H 2016 Ph. D. Dissertation (Shanghai: Shanghai University

    [24]

    钟任斌 2012 博士学位论文(成都: 电子科技大学)

    Zhong R B 2012 Ph. D. Dissertation(Chengdu: University of Electronic Science and Technology of China

  • [1] Huang Ruo-Tong, Li Jiu-Sheng. Terahertz multibeam modulation reflection-coded metasurface. Acta Physica Sinica, 2023, 72(5): 054203. doi: 10.7498/aps.72.20221962
    [2] Zhang Lian, Wang Hua-Yu, Wang Ning, Tao Can, Zhai Xue-Lin, Ma Ping-Zhun, Zhong Ying, Liu Hai-Tao. Broadband enhancement of spontaneous emission by optical dipole nanoantenna on metallic substrate: An intuitive model of surface plasmon polariton. Acta Physica Sinica, 2022, 71(11): 118101. doi: 10.7498/aps.70.20212290
    [3] Zhang Lian,  Wang Hua-Yu,  Wang Ning,  Tao Can,  Zhai Xue-Lin,  Ma Ping-Zhun,  Zhong Ying,  Liu Hai-Tao. Broadband Enhancement of the Spontaneous Emission by an Optical Dipole Nanoantenna on Metallic Substrate: an Intuitive Model of Surface Plasmon Polariton. Acta Physica Sinica, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212290
    [4] Feng Long-Cheng, Du Chen, Yang Sheng-Xin, Zhang Cai-Hong, Wu Jing-Bo, Fan Ke-Bin, Jin Biao-Bing, Chen Jian, Wu Pei-Heng. Research on terahertz real-time near-field spectral imaging. Acta Physica Sinica, 2022, 71(16): 164201. doi: 10.7498/aps.71.20220131
    [5] Long Jie, Li Jiu-Sheng. Terahertz phase shifter based on phase change material-metasurface composite structure. Acta Physica Sinica, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [6] Li Ze-Yu, Jiang Qu-Han, Ma Teng-Zhou, Yuan Ying-Hao, Chen Lin. Multi-parameter tunable phase transition based terahertz graphene plasmons and its application. Acta Physica Sinica, 2021, 70(22): 224202. doi: 10.7498/aps.70.20210445
    [7] Wang Xiao-Lei, Zhao Jie-Hui, Li Miao, Jiang Guang-Ke, Hu Xiao-Xue, Zhang Nan, Zhai Hong-Chen, Liu Wei-Wei. Tight focus and field enhancement of terahertz waves using a probe based on spoof surface plasmons. Acta Physica Sinica, 2020, 69(5): 054201. doi: 10.7498/aps.69.20191531
    [8] Li Xiao-Nan, Zhou Lu, Zhao Guo-Zhong. Terahertz vortex beam generation based on reflective metasurface. Acta Physica Sinica, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [9] Chen Lu, Chen Yue-Gang. Surface plasmon polaritons’ propagation controlled by metal-photorefractive material composite holographical structure. Acta Physica Sinica, 2019, 68(6): 067101. doi: 10.7498/aps.68.20181664
    [10] Zhang Xu-Tao, Que Xiao-Feng, Cai He, Sun Jin-Hai, Zhang Jing, Li Liang-Sheng, Liu Yong-Qiang. Simulations and time-domain spectroscopy measurements for terahertz radar-cross section. Acta Physica Sinica, 2019, 68(16): 168701. doi: 10.7498/aps.68.20190552
    [11] Wang Wen-Hui,  Zhang Nao. Energy loss of surface plasmon polaritons on Ag nanowire waveguide. Acta Physica Sinica, 2018, 67(24): 247302. doi: 10.7498/aps.67.20182085
    [12] Zhang Xue-Jin, Lu Yan-Qing, Chen Yan-Feng, Zhu Yong-Yuan, Zhu Shi-Ning. Terahertz surface polaritons. Acta Physica Sinica, 2017, 66(14): 148705. doi: 10.7498/aps.66.148705
    [13] Yang Lei, Fan Fei, Chen Meng, Zhang Xuan-Zhou, Chang Sheng-Jiang. Multifunctional metasurfaces for terahertz polarization controller. Acta Physica Sinica, 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [14] Zhang Hui-Yun, Liu Meng, Zhang Yu-Ping, Shen Duan-Long, Wu Zhi-Xin, Yin Yi-Heng, Li De-Hua. Research of continuous wave pumping waveguide to generate terahertz laser. Acta Physica Sinica, 2014, 63(2): 020702. doi: 10.7498/aps.63.020702
    [15] Liang Da-Chuan, Wei Ming-Gui, Gu Jian-Qiang, Yin Zhi-Ping, Ouyang Chun-Mei, Tian Zhen, He Ming-Xia, Han Jia-Guang, Zhang Wei-Li. Broad-band time domain terahertz radar cross-section research in scale models. Acta Physica Sinica, 2014, 63(21): 214102. doi: 10.7498/aps.63.214102
    [16] Hu Meng-Zhu, Zhou Si-Yang, Han Qin, Sun Hua, Zhou Li-Ping, Zeng Chun-Mei, Wu Zhao-Feng, Wu Xue-Mei. Ultraviolet surface plasmon polariton propagation for ZnO semiconductor-insulator-metal waveguides. Acta Physica Sinica, 2014, 63(2): 029501. doi: 10.7498/aps.63.029501
    [17] Han Yu, Yuan Xue-Song, Ma Chun-Yan, Yan Yang. Study of a gyrotron oscillator with corrugated interaction cavity. Acta Physica Sinica, 2012, 61(6): 064102. doi: 10.7498/aps.61.064102
    [18] Li Hua, Han Ying-Jun, Tan Zhi-Yong, Zhang Rong, Cao Jun-Cheng. Device fabrication of semi-insulating surface-plasmon terahertz quantum-cascade lasers. Acta Physica Sinica, 2010, 59(3): 2169-2172. doi: 10.7498/aps.59.2169
    [19] Chen Hua, Wang Li. Terahertz surface plasmon polariton couping on brass rods. Acta Physica Sinica, 2009, 58(7): 4605-4609. doi: 10.7498/aps.58.4605
    [20] Ma Shi-Hua, Shi Yu-Lei, Xu Xin-Long, Yan Wei, Yang Yu-Ping, Wang Li. Low-frequency collective vibrational modes of asparagine by terahertz time-domain spectroscopy. Acta Physica Sinica, 2006, 55(8): 4091-4095. doi: 10.7498/aps.55.4091
Metrics
  • Abstract views:  1779
  • PDF Downloads:  75
  • Cited By: 0
Publishing process
  • Received Date:  20 February 2024
  • Accepted Date:  18 March 2024
  • Available Online:  09 April 2024
  • Published Online:  05 June 2024

/

返回文章
返回