Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Methane gas spectral imaging method based on dual wedge scanning mirrors

Wang Xia-Chun Zhang Zhi-Rong Cai Yong-Jun Sun Peng-Shuai Pang Tao Xia Hua Wu Bian Guo Qiang

Citation:

Methane gas spectral imaging method based on dual wedge scanning mirrors

Wang Xia-Chun, Zhang Zhi-Rong, Cai Yong-Jun, Sun Peng-Shuai, Pang Tao, Xia Hua, Wu Bian, Guo Qiang
PDF
HTML
Get Citation
  • With the increase in the number of oil and gas pipelines laid in China, more attention needs to be paid to pipeline maintenance work. At present, the main methods of detecting natural gas leaks in oil and gas transmission stations include manual inspections, opposing natural gas detection equipment, and cloud desktop natural gas detection equipment. Hand held natural gas detection equipment is used for manual inspection, which requires regular manual inspection. However, the response speed is poor and gas leaks cannot be detected in a timely manner. The opposed laser gas detection method can only detect the presence of gas on the beam path. If a larger area of leakage detection is desired, more equipment needs to be installed, resulting in a greatly increase in hardware costs. The existing cloud desktop laser gas detection method controls the deflection of the laser beam through the cloud platform to achieve leak detection at various points in the area to be tested. However, the rotation speed of the cloud platform is slow, and a complete detection cycle takes dozens of minutes, and only the presence of gas can be detected. For accurate leak location, manual on-site survey is also required to further determine the leak location. In order to meet the needs of the real-time monitoring and rapid positioning of oil and gas pipeline leaks, in this work, a fast and accurately controlled dual wedge scanning mirror system is designed, which combines tunable semiconductor laser absorption spectroscopy technology to convert the gas measurement laser beam from point measurement to surface measurement, thereby obtaining the two-dimensional distribution of gas, which is conducive to subsequent analysis and positioning of gas leakage sources. By using the inverse solution iterative optimization algorithm, the angle of the wedge mirror is controlled to obtain an efficient and uniform beam scanning trajectory. The deflection direction and detection position of the laser beam are fused with the corresponding methane concentration information, and a methane concentration data containing position information is constructed. In order to quantitatively verify the measurement accuracy and spatial resolution in the experiment, a standard air bag is used to simulate the methane leakage distribution. The results show that the minimum detection limit of the system can be lower than 5×10–4 m, and the spatial resolution can be less than 6 cm. At the same time, this method can adjust the scanning step node based on the measurement distance of the oil from gas station, thereby achieving adjustable imaging resolution. This imaging method provides a new idea for accurately positioning and detecting the methane leakage location and amount.
      Corresponding author: Zhang Zhi-Rong, zhangzr@aiofm.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant Nos. 2022YFB3207601, 2021YFB3201904), the National Natural Science Foundation of China (Grant Nos. 11874364, 41877311, 42005107), the “Spark” Fund Project of Hefei Institutes of Physics Science, Chinese Academy Sciences (Grant No. YZJJ2022QN02), and the Outstanding Youth Research Project of Anhui Provincial Department of Education, China (Grant No. 2022AH020098).
    [1]

    王小强, 王保群, 王博, 林燕红, 郭彩霞 2018 石油规划设计 29 1Google Scholar

    Wang X Q, Wang B Q, Wang B, Lin Y H, Guo C X 2018 Petroleum Planning Eng. 29 1Google Scholar

    [2]

    张志荣, 孙鹏帅, 庞涛, 李哲, 夏滑, 崔小娟, 吴边, 徐启铭, 董凤忠 2018 光学精密工程 26 1925Google Scholar

    Zhang Z R, Sun P S, Pang T, Li Z, Xia H, Cui X J, Wu B, Xu Q M, Dong F Z 2018 Opt. Precis. Eng. 26 1925Google Scholar

    [3]

    董高华, 赵廉斌, 曹永乐, 梁怿, 葛淩志, 马铁量, 孟书进 2023 化工自动化仪表 3 283Google Scholar

    Dong G H, Zhao L B, Cao Y L, Liang Y, Ge L Z, Ma T L, Meng S J 2023 Contr. Instrum. Chem. Indust. 3 283Google Scholar

    [4]

    祁丽荣, 邢琳琳, 刘瑶, 王一君 2022 城市燃气 4 9Google Scholar

    Qi L R, Xing L L, Liu Y, Wang Y J 2022 Urban Gas 4 9Google Scholar

    [5]

    朱云伟 2023 管道技术与设备 2 19Google Scholar

    Zhu Y W 2023 Pipeline Technique and Equipment 2 19Google Scholar

    [6]

    庞涛, 王煜, 夏滑, 张志荣, 汤玉泉, 董凤忠 2016 光子学报 9 104Google Scholar

    Pang T, Wang L, Xia H, Zhang Z R, Tang Y Q, Dong F Z 2016 Acta Photon. Sin. 9 104Google Scholar

    [7]

    徐俊, 李云飞, 程跃, 檀剑飞, 刘东, 周振 2023 激光与光电子学进展 6 376Google Scholar

    Xu J, Li J, Li Y F, Cheng Y, Tan J F, Liu D, Zhou Z 2023 Laser Optoelectron. Prog. 6 376Google Scholar

    [8]

    孙鹏帅, 张志荣, 李俊, 夏滑, 韩荦, 李哲, 谭东杰, 马云宾, 董凤忠 2016 光学与光电技术 5 62

    Sun P S, Zhang Z R, Li J, Xia H, Han H, Li Z, Tan D J, Ma Y B, Dong F Z 2016 Opt. Optoelectron. Tech. 5 62

    [9]

    Fox T A , Barchyn T E, Risk D, Ravikumar A P, Hugenholtz C H 2019 Environ. Res. Lett. 14 053002Google Scholar

    [10]

    van Well B, Murray S, Hodgkinson J, Pride R, Strzoda R, Gibson G, Padgett M 2005 J. Opt. 7 s420Google Scholar

    [11]

    Wainner R T, Green B D, Allen M G, White M A, Stafford-Evans J, Naper R 2002 Appl. Phys. B-Lasers O 75 249Google Scholar

    [12]

    Lagueux P, Tremblay P, Morton V, Chamberland M, Farley V, Kastek M, Firmanty K 2017 Meas. Autom. Monit. 63 65

    [13]

    Hu Y Y, Xu L, Shen X C, Jin L, Xu H Y, Deng Y S, Liu J G, Liu W Q 2021 Appl. Opt. 60 9396Google Scholar

    [14]

    Zhao Q, Nie X, Luo D, Wang J, Li Q, Chen W 2022 Photonics 9 992Google Scholar

    [15]

    Gibson G M, Sun B Q, Edgar M P, Phillips D B, Hempler N, Maker G T, Malcolm G P A, Padgett M J 2017 Opt. Express 25 2998Google Scholar

    [16]

    McRae T G, Kulp T J 1993 Appl. Opt. 32 4037Google Scholar

    [17]

    范大鹏, 周远, 鲁亚飞, 黑墨, 熊飞湍, 李凯 2013 中国光学 2 136Google Scholar

    Fan D P, Zhou Y, Lu Y F, Hei M, Xiong F C, Li K 2013 Chin. Opt. 2 136Google Scholar

    [18]

    孙琳洋 2016 硕士学位论文 (成都: 电子科技大学)

    Sun L Y 2016 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China

    [19]

    Marshall G F 1999 Conference on Optical Scanning - Design and Application Denver, Colorado JUL 21–22, 1999 p74

    [20]

    Garcia-Torales G 2022 Conference on Advances in 3OM - Opto-Mechatronics, Opto-Mechanics, and Optical Metrology Opto-Mechanics, and Optical Metrology Timisoara, ROMANIA Timisoara, December 13–14, 2021 p121700H

    [21]

    秦聪明 2021 硕士学位论文 (成都: 中国科学院大学, 中国科学院光电技术研究所)

    Qin C M 2021 M. S. Thesis (Chengdu: University of Chinese Academy of Sciences, Institute of Optics and Electronics, Chinese Academy of Sciences

    [22]

    Sun J F, Liu L R, Yun M J, Wan L Y, Zhang M L 2006 Opt. Eng. 45 043004Google Scholar

    [23]

    Roy G, Cao X Y, Bernier R, Roy S 2015 Appl. Opt. 54 10213Google Scholar

    [24]

    曾昊旻, 李松, 张智宇, 伍煜 2019 光学精密工程 27 1444

    Zeng H W, Li S, Zhang Z Y, Wu Y 2019 Opt. Precis. Eng. 27 1444

    [25]

    Sandoval J D, Delgado K, Fariña D, de la Puente F, Esper-Chaín R, Martín M 2022 Appl. Sci. Basel 12 21

    [26]

    Titchener J, Millington-Smith D, Goldsack C, Harrison G, Dunning A, Ai X, Reed M 2022 Appl. Energy 306 118086Google Scholar

    [27]

    Gibson G, van Well B, Hodgkinson J, Pride R, Strzoda R, Murray S, Bishton S, Padgett M 2006 New J. Phys. 8 26Google Scholar

  • 图 1  双楔形扫描镜光束传输原理图

    Figure 1.  Schematic diagram of dual wedge scanning mirror.

    图 2  双楔形扫描镜扫描轨迹 (a) 优化前光斑轨迹扫描图; (b) 轨迹半径与角度差$ {{\Delta }}\theta $的关系

    Figure 2.  Scanning trajectory of dual wedge scanning mirror: (a) Scanning image of spot trajectory before optimization; (b) relationship between trajectory radius and angle difference $ {{\Delta }}\theta $.

    图 3  双楔形扫描镜不同角速度差值对应的扫描轨迹 (a) 0.25 (°)/s; (b) 0.2 (°)/s; (c) 0.15 (°)/s; (d) 0.1 (°)/s

    Figure 3.  Scanning trajectories corresponding to different angular velocity differences of dual wedge scanning mirrors: (a) 0.25 (°)/s; (b) 0.2 (°)/s; (c) 0.15 (°)/s; (d) 0.1 (°)/s.

    图 4  光斑轨迹优化流程图

    Figure 4.  Flow chart of spot trajectory optimization

    图 5  不同角速度差值优化后的光斑扫描轨迹 (a) 0.5 (°)/s; (b) 0.25 (°)/s

    Figure 5.  Optimized spot scanning trajectory with different angular velocity: (a) 0.5 (°)/s; (b) 0.25 (°)/s.

    图 6  基于双楔形扫描镜的甲烷气体成像系统原理图

    Figure 6.  Schematic diagram of methane gas imaging system based on dual wedge scanning mirrors.

    图 7  甲烷气体成像过程 (a) 实际扫描区域; (b) 散点图成像; (c) 二维邻域插值算法成像; (d) 滤波处理成像

    Figure 7.  Methane gas imaging process: (a) Actual scanning area; (b) scatter plot imaging; (c) 2D neighborhood interpolation algorithm for imaging; (d) filter processing imaging.

    图 8  实际光束穿过气袋边缘位置的图解

    Figure 8.  Diagram of actual beam passing through the edge of the airbag.

    图 9  甲烷气袋的成像对比实验 (a) 相同气袋充不同浓度的甲烷气体; (b) 相同气袋充不同浓度的甲烷气体成像图; (c) 不同气袋充相同浓度的甲烷气体; (d) 不同气袋充相同浓度的甲烷气体成像图

    Figure 9.  Imaging comparative experiment of methane gas bags: (a) Filling the same gas bag with different concentrations of methane gas; (b) imaging images of methane gas with the same gas bag filled with different concentrations; (c) filling different gas bags with methane gas of the same concentration; (d) imaging images of methane gas with different gas bags filled with the same concentration.

  • [1]

    王小强, 王保群, 王博, 林燕红, 郭彩霞 2018 石油规划设计 29 1Google Scholar

    Wang X Q, Wang B Q, Wang B, Lin Y H, Guo C X 2018 Petroleum Planning Eng. 29 1Google Scholar

    [2]

    张志荣, 孙鹏帅, 庞涛, 李哲, 夏滑, 崔小娟, 吴边, 徐启铭, 董凤忠 2018 光学精密工程 26 1925Google Scholar

    Zhang Z R, Sun P S, Pang T, Li Z, Xia H, Cui X J, Wu B, Xu Q M, Dong F Z 2018 Opt. Precis. Eng. 26 1925Google Scholar

    [3]

    董高华, 赵廉斌, 曹永乐, 梁怿, 葛淩志, 马铁量, 孟书进 2023 化工自动化仪表 3 283Google Scholar

    Dong G H, Zhao L B, Cao Y L, Liang Y, Ge L Z, Ma T L, Meng S J 2023 Contr. Instrum. Chem. Indust. 3 283Google Scholar

    [4]

    祁丽荣, 邢琳琳, 刘瑶, 王一君 2022 城市燃气 4 9Google Scholar

    Qi L R, Xing L L, Liu Y, Wang Y J 2022 Urban Gas 4 9Google Scholar

    [5]

    朱云伟 2023 管道技术与设备 2 19Google Scholar

    Zhu Y W 2023 Pipeline Technique and Equipment 2 19Google Scholar

    [6]

    庞涛, 王煜, 夏滑, 张志荣, 汤玉泉, 董凤忠 2016 光子学报 9 104Google Scholar

    Pang T, Wang L, Xia H, Zhang Z R, Tang Y Q, Dong F Z 2016 Acta Photon. Sin. 9 104Google Scholar

    [7]

    徐俊, 李云飞, 程跃, 檀剑飞, 刘东, 周振 2023 激光与光电子学进展 6 376Google Scholar

    Xu J, Li J, Li Y F, Cheng Y, Tan J F, Liu D, Zhou Z 2023 Laser Optoelectron. Prog. 6 376Google Scholar

    [8]

    孙鹏帅, 张志荣, 李俊, 夏滑, 韩荦, 李哲, 谭东杰, 马云宾, 董凤忠 2016 光学与光电技术 5 62

    Sun P S, Zhang Z R, Li J, Xia H, Han H, Li Z, Tan D J, Ma Y B, Dong F Z 2016 Opt. Optoelectron. Tech. 5 62

    [9]

    Fox T A , Barchyn T E, Risk D, Ravikumar A P, Hugenholtz C H 2019 Environ. Res. Lett. 14 053002Google Scholar

    [10]

    van Well B, Murray S, Hodgkinson J, Pride R, Strzoda R, Gibson G, Padgett M 2005 J. Opt. 7 s420Google Scholar

    [11]

    Wainner R T, Green B D, Allen M G, White M A, Stafford-Evans J, Naper R 2002 Appl. Phys. B-Lasers O 75 249Google Scholar

    [12]

    Lagueux P, Tremblay P, Morton V, Chamberland M, Farley V, Kastek M, Firmanty K 2017 Meas. Autom. Monit. 63 65

    [13]

    Hu Y Y, Xu L, Shen X C, Jin L, Xu H Y, Deng Y S, Liu J G, Liu W Q 2021 Appl. Opt. 60 9396Google Scholar

    [14]

    Zhao Q, Nie X, Luo D, Wang J, Li Q, Chen W 2022 Photonics 9 992Google Scholar

    [15]

    Gibson G M, Sun B Q, Edgar M P, Phillips D B, Hempler N, Maker G T, Malcolm G P A, Padgett M J 2017 Opt. Express 25 2998Google Scholar

    [16]

    McRae T G, Kulp T J 1993 Appl. Opt. 32 4037Google Scholar

    [17]

    范大鹏, 周远, 鲁亚飞, 黑墨, 熊飞湍, 李凯 2013 中国光学 2 136Google Scholar

    Fan D P, Zhou Y, Lu Y F, Hei M, Xiong F C, Li K 2013 Chin. Opt. 2 136Google Scholar

    [18]

    孙琳洋 2016 硕士学位论文 (成都: 电子科技大学)

    Sun L Y 2016 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China

    [19]

    Marshall G F 1999 Conference on Optical Scanning - Design and Application Denver, Colorado JUL 21–22, 1999 p74

    [20]

    Garcia-Torales G 2022 Conference on Advances in 3OM - Opto-Mechatronics, Opto-Mechanics, and Optical Metrology Opto-Mechanics, and Optical Metrology Timisoara, ROMANIA Timisoara, December 13–14, 2021 p121700H

    [21]

    秦聪明 2021 硕士学位论文 (成都: 中国科学院大学, 中国科学院光电技术研究所)

    Qin C M 2021 M. S. Thesis (Chengdu: University of Chinese Academy of Sciences, Institute of Optics and Electronics, Chinese Academy of Sciences

    [22]

    Sun J F, Liu L R, Yun M J, Wan L Y, Zhang M L 2006 Opt. Eng. 45 043004Google Scholar

    [23]

    Roy G, Cao X Y, Bernier R, Roy S 2015 Appl. Opt. 54 10213Google Scholar

    [24]

    曾昊旻, 李松, 张智宇, 伍煜 2019 光学精密工程 27 1444

    Zeng H W, Li S, Zhang Z Y, Wu Y 2019 Opt. Precis. Eng. 27 1444

    [25]

    Sandoval J D, Delgado K, Fariña D, de la Puente F, Esper-Chaín R, Martín M 2022 Appl. Sci. Basel 12 21

    [26]

    Titchener J, Millington-Smith D, Goldsack C, Harrison G, Dunning A, Ai X, Reed M 2022 Appl. Energy 306 118086Google Scholar

    [27]

    Gibson G, van Well B, Hodgkinson J, Pride R, Strzoda R, Murray S, Bishton S, Padgett M 2006 New J. Phys. 8 26Google Scholar

  • [1] Pang Wei-Xu, Li Ning, Huang Xiao-Long, Kang Yang, Li Can, Fan Xu-Dong, Weng Chun-Sheng. Optimization of beam arrangement for tunable diode laser absorption tomography reconstruction based on fractional Tikhonov regularization. Acta Physica Sinica, 2023, 72(3): 037801. doi: 10.7498/aps.72.20221731
    [2] Zhao Rong, Zhou Bin, Liu Qi, Dai Ming-Lu, Wang Bu-Bin, Wang Yi-Hong. Online tomography algorithm based on laser absorption spectroscopy. Acta Physica Sinica, 2023, 72(5): 054206. doi: 10.7498/aps.72.20221935
    [3] Wang Yu-Hao, Liu Jian-Guo, Xu Liang, Cheng Xiao-Xiao, Deng Ya-Song, Shen Xian-Chun, Sun Yong-Feng, Xu Han-Yang. Qualitative analysis of gas detection limit of Fourier infrared spectroscopy. Acta Physica Sinica, 2022, 71(9): 093201. doi: 10.7498/aps.71.20212366
    [4] Long Jiang-Xiong, Shao Li, Zhang Yu-Jun, You Kun, He Ying, Ye Qing, Sun Xiao-Quan. Measurement research of line intensity and self-broadening coefficient for NH3 spectra in 4296–4302 cm–1. Acta Physica Sinica, 2022, 71(16): 164204. doi: 10.7498/aps.71.20220504
    [5] Li Meng-Qi, Zhang Yu-Jun, He Ying, You Kun, Fan Bo-Qiang, Yu Dong-Qi, Xie Hao, Lei Bo-En, Li Xiao-Yi, Liu Jian-Guo, Liu Wen-Qing. NH3 aliasing absorption spectra at 1103.4 cm–1 based on continuous quantum cascade laser. Acta Physica Sinica, 2020, 69(7): 074201. doi: 10.7498/aps.69.20191832
    [6] Li Ning, Tu Xin, Huang Xiao-Long, Weng Chun-Sheng. Development of beam arrangement design for tunable diode laser absorption tomography reconstruction based on Tikhonov regularization parameter matrix. Acta Physica Sinica, 2020, 69(22): 227801. doi: 10.7498/aps.69.20201144
    [7] Wang Chuan-Wei, Li Ning, Huang Xiao-Long, Weng Chun-Sheng. Two-stage velocity distribution measurement from multiple projections by tunable diode laser absorption spectrum. Acta Physica Sinica, 2019, 68(24): 247801. doi: 10.7498/aps.68.20191223
    [8] Zhang Wei-Peng, Yang Hong-Lei, Chen Xin-Yi, Wei Hao-Yun, Li Yan. Optical frequency linked dual-comb absorption spectrum measurement. Acta Physica Sinica, 2018, 67(9): 090701. doi: 10.7498/aps.67.20180150
    [9] Li Ning, Lü Xiao-Jing, Jing Weng. Laser intensity and absorbance measurements by tunable diode laser absorption spectroscopy based on non-line fitting algorithm. Acta Physica Sinica, 2018, 67(5): 057801. doi: 10.7498/aps.67.20171905
    [10] Sun Ming-Guo, Ma Hong-Liang, Liu Qiang, Cao Zhen-Song, Wang Gui-Shi, Liu Kun, Huang Yin-Bo, Gao Xiao-Ming, Rao Rui-Zhong. Highly precise and real-time measurements of 13CO2/12CO2 isotopic ratio in breath using a 2 μm diode laser. Acta Physica Sinica, 2018, 67(6): 064206. doi: 10.7498/aps.67.20171861
    [11] Miao Yin-Ping, Jin Wei, Yang Fan, Lin Yue-Chuan, Tan Yan-Zhen, Hoi Lut. Advances in optical fiber photothermal interferometry for gas detection. Acta Physica Sinica, 2017, 66(7): 074212. doi: 10.7498/aps.66.074212
    [12] Geng Hui, Liu Jian-Guo, Zhang Yu-Jun, Kan Rui-Feng, Xu Zhen-Yu, Yao Lu, Ruan Jun. Ethanol vapor measurement based on tunable diode laser absorption spectroscopy. Acta Physica Sinica, 2014, 63(4): 043301. doi: 10.7498/aps.63.043301
    [13] Lan Li-Juan, Ding Yan-Jun, Jia Jun-Wei, Du Yan-Jun, Peng Zhi-Min. Theoretical and experimental study of measuring gas temperature in vacuum environment using tunable diode laser absorption spectroscopy. Acta Physica Sinica, 2014, 63(8): 083301. doi: 10.7498/aps.63.083301
    [14] Zhang Rui, Zhao Xue-Hong, Zhao Ying, Wang Zhe, Wang Yan. Laser characteristic effect on the trace gas detection. Acta Physica Sinica, 2014, 63(14): 140701. doi: 10.7498/aps.63.140701
    [15] Zhang Zhi-Rong, Wu Bian, Xia Hua, Pang Tao, Wang Gao-Xuan, Sun Peng-Shuai, Dong Feng-Zhong, Wang Yu. Study on the temperature modified method for monitoring gas concentrations with tunable diode laser absorption spectroscopy. Acta Physica Sinica, 2013, 62(23): 234204. doi: 10.7498/aps.62.234204
    [16] Sun You-Wen, Liu Wen-Qing, Wang Shi-Mei, Huang Shu-Hua, Zeng Yi, Xie Pin-Hua, Chen Jun, Wang Ya-Ping, Si Fu-Qi. Measurement of a gas using none dispersive infrared technique with two analysis channels. Acta Physica Sinica, 2012, 61(14): 140704. doi: 10.7498/aps.61.140704
    [17] Song Jun-Ling, Hong Yan-Ji, Wang Guang-Yu, Pan Hu. Two-dimensional reconstructions of gas temperature and concentration in combustion based on tunable diode laser absorption spectroscopy. Acta Physica Sinica, 2012, 61(24): 240702. doi: 10.7498/aps.61.240702
    [18] Tang Yuan-Yuan, Liu Wen-Qing, Kan Rui-Feng, Zhang Yu-Jun, Liu Jian-Guo, Xu Zhen-Yu, Shu Xiao-Wen, Zhang Shuai, He Ying, Geng Hui, Cui Yi-Ben. Spectroscopy processing for the NO measurement based on the room-temperature pulsed quantum cascade laser. Acta Physica Sinica, 2010, 59(4): 2364-2368. doi: 10.7498/aps.59.2364
    [19] Li Ning, Weng Chun-Sheng. Gas concentration and temperature reconstruction by genetic simulated annealing algorithm based on multi-wavelengths diode laser absorption spectroscopy. Acta Physica Sinica, 2010, 59(10): 6914-6920. doi: 10.7498/aps.59.6914
    [20] Kan Rui-Feng, Liu Wen-Qing, Zhang Yu-Jun, Liu Jian-Guo, Dong Feng-Zhong, Gao Shan-Hu, Wang Min, Chen Jun. Absorption measurements of ambient methane with tunable diode laser. Acta Physica Sinica, 2005, 54(4): 1927-1930. doi: 10.7498/aps.54.1927
Metrics
  • Abstract views:  2397
  • PDF Downloads:  47
  • Cited By: 0
Publishing process
  • Received Date:  04 December 2023
  • Accepted Date:  28 December 2023
  • Available Online:  08 January 2024
  • Published Online:  05 June 2024

/

返回文章
返回