Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NH3 aliasing absorption spectra at 1103.4 cm–1 based on continuous quantum cascade laser

Li Meng-Qi Zhang Yu-Jun He Ying You Kun Fan Bo-Qiang Yu Dong-Qi Xie Hao Lei Bo-En Li Xiao-Yi Liu Jian-Guo Liu Wen-Qing

Citation:

NH3 aliasing absorption spectra at 1103.4 cm–1 based on continuous quantum cascade laser

Li Meng-Qi, Zhang Yu-Jun, He Ying, You Kun, Fan Bo-Qiang, Yu Dong-Qi, Xie Hao, Lei Bo-En, Li Xiao-Yi, Liu Jian-Guo, Liu Wen-Qing
PDF
HTML
Get Citation
  • Due to the important role of NH3 in atmospheric aerosol chemistry, rapid and accurate inversion of ammonia concentration is very important for environmental issues. In this paper, a 9.05 μm continuous quantum cascade laser (QCL) is used as the light source at room temperature, and the scanned-wavelength direct-absorption tunable diode laser absorption spectroscopy (TDLAS) is used to study the spectral characteristics of the QCL at 1103.4 cm–1. A low-pressure experimental platform based on two-level temperature control was designed to measure the six aliasing absorption lines of ammonia at 1103.4 cm–1. The broadening of spectral line becomes smaller under the condition of reducing the pressure, and the aliasing spectra are separated. The line strength of each absorption line is calculated, and the measurement uncertainty is further analyzed. A method for accurate inversion of single-spectrum gas concentration by low-pressure separation was proposed for severely aliased spectra, and experimental verification was performed. By comparing the results with the HITRAN database, it is concluded that the experimental measured line strength of ammonia gas at 1103.4 cm–1 has a deviation from the database of . The uncertainty of the line intensity measurement is mainly related to the separation and extraction of aliasing absorbance, which is about 2.42%–8.92%. The deviation between the inversion concentration and the actual value under the condition of extreme low pressure is between 1% and 3%, while the calculated deviation of the line intensity value in the 2.71%–4.71% HITRAN database is about 3% to 5%. The results above indicate that the experimental data are reliable. The non-separative aliasing spectral line method is used to invert the concentration at normal pressure, and the low-pressure separated single spectral line method is used to invert the concentration at low pressure. The results of the two are compared. The analysis results show that the low-pressure separation single-spectrum spectral line inversion concentration value has smaller deviation and higher accuracy from the original concentration. The study of this method provides reference for future inversion of gas concentrations inversion in the atmospheric environment and other fields.
      Corresponding author: Zhang Yu-Jun, yjzhang@aiofm.ac.cn
    [1]

    何莹 2017 博士学位论文(合肥: 中国科学技术大学)

    He Y 2017 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [2]

    Gu B J, Ju X T, Chang J, Ge Y, Vitousek P M 2015 Proc. Natl. Acad. Sci. U.S.A. 112 8792Google Scholar

    [3]

    Fowler D, Coyle M, Skiba U, Sutton M A, Voss M 2013 Philos. Trans. R. Soc. B-Biol. Sci. 368 0164

    [4]

    Vitousek P M, Menge D N L, Reed S C, Cleveland C C 2013 Philos. Trans. R.Soc. B-Biol. Sci. 368 0119

    [5]

    Bhattacharyya P, Roy K S, Neogi S, Adhya T K, Rao K S, Manna M C 2012 Soil Tillage Res. 124 119Google Scholar

    [6]

    王飞, 黄群星, 李宁, 严建华, 池涌, 岑可法 2007 物理学报 56 3867Google Scholar

    Wang F, Huang Q X, Li N, Yan J H, Chi Y, Cen K F 2007 Acta Phys. Sin. 56 3867Google Scholar

    [7]

    Tao L, Sun K, Miller D J, Khan M A, Zondlo M A 2012 Opt. Lett. 37 1358Google Scholar

    [8]

    陈玖英, 刘建国, 何亚柏, 王辽, 江强, 许振宇, 姚路, 袁松, 阮俊, 何俊锋, 戴云海, 阚瑞峰 2013 物理学报 62 224206Google Scholar

    Chen J Y, Liu J G, He Y B, Wang L, Jiang Q, Xu Z Y, Yao L, Yuan S, Ruan J, He J F, Dai Y H, Kan R F 2013 Acta Phys. Sin. 62 224206Google Scholar

    [9]

    王立明, 张玉钧, 李宏斌, 周毅, 尤坤, 何莹, 刘文清 2012 中国光学快报 10 74

    Wang L M, Zhang Y J, Li H B, Zhou Y, You K, He Y, Liu W Q 2012 Chin. Opt. Lett. 10 74

    [10]

    Webber M E, Baer D S, Hanson R K 2001 Appl. Opt. 40 2031Google Scholar

    [11]

    Xu L H, Liu Z, Yakovlev 2004 Infrared Phys. Technol. 45 31Google Scholar

    [12]

    Jia H, Zhao W, Cai T 2009 J. Quant.Spectrosc.Radiat. Transfer 110 347Google Scholar

    [13]

    Sur R, Spearrin R M, Peng W Y, Strand C L, Jeffffries J B, Enns G M, Hanson R K 2016 J. Quant.Spectrosc.Radiat. Transfer 175 90Google Scholar

    [14]

    Romh J E, Cacciani P, Taher F 2016 J. Mol.Spectrosc. 326 122Google Scholar

    [15]

    Yang S, Li J, Wang R 2017 Applied Optics and Photonics China Beijing, China, October 24, 2017 p61

    [16]

    You K, Zhang Y J, Wang L M, Li H B, He Y 2013 Adv. Mater. Res. 760 84

    [17]

    鲁一冰, 刘文清, 张玉钧, 张恺, 何莹, 尤坤, 李潇毅, 刘国华, 唐七星, 范博强, 余冬琪, 李梦琪 2019 光谱学与光谱分析 39 2657

    Lu Y B, Liu W Q, Zhang Y J, Zhang K, He Y, You K, Li X Y, Liu G H, Tang Q X, Fan B Q, Yu D Q, Li M Q 2019 Spectrosc. Spect. Anal. 39 2657

    [18]

    费业泰 2015 误差理论与数据处理 (北京: 机械工业出版社) 第83页

    Fei Y T 2015 Error Theory and Data Processing (Beijing: Machinery Industry Press) p83 (in Chinese)

    [19]

    Xin Z 2005 Pap. Reg. Sci. 8418 3

    [20]

    PogányA, Klein A, Ebert V 2015 J. Quant. Spectrosc. Radiat. Transfer 165 108Google Scholar

    [21]

    GoldensteinC S, Hanson R K 2015 J. Quant. Spectrosc. Radiat. Transfer 152 127Google Scholar

    [22]

    GoldensteinC S, Jeffries J B, Hanson R K 2013 J. Quant. Spectrosc. Radiat. Transfer 130 100Google Scholar

    [23]

    聂伟, 阚瑞峰, 许振宇, 杨晨光, 陈兵, 夏晖晖, 魏敏, 陈祥, 姚路, 李杭, 范雪丽, 胡佳屹 2017 物理学报 66 054207Google Scholar

    Nie W, Kan R F, Xu Z Y, Yang C G, Chen B, Xia H H, Wei M, Chen X, Yao L, Li H, Fan X L, Hu J Y 2017 Acta Phys.Sin. 66 054207Google Scholar

    [24]

    林洁丽 2001 博士学位论文 (武汉: 中国科学院研究生院 (武汉物理与数学研究所))

    Lin J L 2001 Ph. D. Dissertation (Wuhan: Chinese Academy of Sciences (Wuhan Institute of Physics and Mathematics)) (in Chinese)

  • 图 1  QCL特性测量实验装置简图

    Figure 1.  QCL characteristic measurement experimental device diagram.

    图 2  实验气路图

    Figure 2.  Experimental gas path diagram.

    图 3  (a)未加二级温控时信号漂移(b)加二级温控后的信号稳定输出

    Figure 3.  (a) Signal drift without secondary temperature control; (b) signal stable output after adding temperature control

    图 4  QCL的温度、电流与波长的关系

    Figure 4.  The temperature, current and wavelength of QCL

    图 5  (a)常压下氨气特征吸收光谱信号(b)不同压力下氨气特征吸收光谱信号

    Figure 5.  (a) Characteristic absorption spectrum signal of ammonia gas under normal pressure; (b) characteristic absorption spectrum signal of ammonia gas under different pressure

    图 6  不同压力下各条吸收线拟合结果

    Figure 6.  Fitting results of various absorption lines under different pressures.

    图 7  实验测量的各吸收线的光谱线强值

    Figure 7.  Spectral line strength values of each absorption line measured by experiment.

    表 1  NH3吸收线及主要参数

    Table 1.  NH3 absorption line and main parameters.

    同位素
    Isotopologue
    波数
    ν/cm–1
    线强
    S/(cm–1/(molecule cm–2))
    空气展宽
    γair/cm–1·atm–1
    自展宽
    γself/cm–1·atm–1
    爱因斯坦系数
    A/s–1
    14NH31103.430477.119 × 10200.08750.4527.183
    14NH31103.434326.131 × 10200.09330.5215.263
    14NH31103.441221.514 × 10–190.08180.3888.654
    14NH31103.469787.756 × 10200.07630.3289.694
    14NH31103.479518.172 × 10200.09940.5952.877
    14NH31103.485757.824 × 10200.0710.27410.32
    DownLoad: CSV

    表 2  实验测量线强与HITRAN数据库对比分析

    Table 2.  Comparison of experimental measurement line strength and HITRAN database.

    v0/cm–1SH/cm–2atm–1SM/cm–2atm–1E/%
    1103.430471.783391.704394.43
    1103.434321.535891.463624.71
    1103.441223.792753.69012.71
    1103.469781.942971.878253.33
    1103.479512.047181.970893.73
    1103.485751.960011.883833.89
    DownLoad: CSV

    表 3  混叠光谱线强测量不确定度

    Table 3.  Uncertainty in the measurement of the intensity of the overlapping spectral line.

    积分吸光度的
    不确定度 ΔA/%
    压强的不
    确定度 ΔP/%
    浓度的不
    确定度 Δm/%
    光程的不
    确定度 ΔL/%
    温度的不
    确定度 ΔT/%
    线强的不
    确定度 ΔS/%
    min2.420.150.20.20.12.44
    max8.928.93
    DownLoad: CSV

    表 4  实验测量线强反演浓度与HITRAN数据库线强反演浓度作对比分析

    Table 4.  Contrast analysis of experimentally measured line strong inversion concentration and HITRAN database line strong inversion concentration.

    实验气压/
    torr
    HITRAN数据库线强
    反演浓度 m1/ppm
    实验测量线强反演
    浓度 m2/ppm
    m1与实际浓度
    偏差/%
    m2与实际浓度
    偏差/%
    3.2104.98102.554.982.55
    8.5103.89101.943.891.94
    12.6102.90101.402.901.40
    19.7103.08101.073.081.07
    25.4103.22101.003.221.00
    31.8106.23102.886.232.88
    90.7108.53104.918.534.91
    760108.86104.938.864.93
    DownLoad: CSV

    表 5  不同压力、标气浓度的比较结果

    Table 5.  Comparison results of different pressure and standard gas concentrations.

    压力P/torr
    反演浓度
    m1, m2/ppm
    标气浓度m/ppm
    3.28.512.619.725.4760
    151.68m1156.68155.32154.73154.79154.81159.62
    m2154.12153.54153.05152.77152.70155.48
    202.00m1207.13206.67205.14205.45205.86210.97
    m2205.25204.73204.29203.88203.82207.06
    250.34m1256.08255.03254.26254.45254.71260.25
    m2254.37253.79253.25252.91252.86256.61
    413.00m1420.47419.73418.18418.55418.94423.77
    m2419.65418.33417.61416.87416.76420.51
    DownLoad: CSV
  • [1]

    何莹 2017 博士学位论文(合肥: 中国科学技术大学)

    He Y 2017 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [2]

    Gu B J, Ju X T, Chang J, Ge Y, Vitousek P M 2015 Proc. Natl. Acad. Sci. U.S.A. 112 8792Google Scholar

    [3]

    Fowler D, Coyle M, Skiba U, Sutton M A, Voss M 2013 Philos. Trans. R. Soc. B-Biol. Sci. 368 0164

    [4]

    Vitousek P M, Menge D N L, Reed S C, Cleveland C C 2013 Philos. Trans. R.Soc. B-Biol. Sci. 368 0119

    [5]

    Bhattacharyya P, Roy K S, Neogi S, Adhya T K, Rao K S, Manna M C 2012 Soil Tillage Res. 124 119Google Scholar

    [6]

    王飞, 黄群星, 李宁, 严建华, 池涌, 岑可法 2007 物理学报 56 3867Google Scholar

    Wang F, Huang Q X, Li N, Yan J H, Chi Y, Cen K F 2007 Acta Phys. Sin. 56 3867Google Scholar

    [7]

    Tao L, Sun K, Miller D J, Khan M A, Zondlo M A 2012 Opt. Lett. 37 1358Google Scholar

    [8]

    陈玖英, 刘建国, 何亚柏, 王辽, 江强, 许振宇, 姚路, 袁松, 阮俊, 何俊锋, 戴云海, 阚瑞峰 2013 物理学报 62 224206Google Scholar

    Chen J Y, Liu J G, He Y B, Wang L, Jiang Q, Xu Z Y, Yao L, Yuan S, Ruan J, He J F, Dai Y H, Kan R F 2013 Acta Phys. Sin. 62 224206Google Scholar

    [9]

    王立明, 张玉钧, 李宏斌, 周毅, 尤坤, 何莹, 刘文清 2012 中国光学快报 10 74

    Wang L M, Zhang Y J, Li H B, Zhou Y, You K, He Y, Liu W Q 2012 Chin. Opt. Lett. 10 74

    [10]

    Webber M E, Baer D S, Hanson R K 2001 Appl. Opt. 40 2031Google Scholar

    [11]

    Xu L H, Liu Z, Yakovlev 2004 Infrared Phys. Technol. 45 31Google Scholar

    [12]

    Jia H, Zhao W, Cai T 2009 J. Quant.Spectrosc.Radiat. Transfer 110 347Google Scholar

    [13]

    Sur R, Spearrin R M, Peng W Y, Strand C L, Jeffffries J B, Enns G M, Hanson R K 2016 J. Quant.Spectrosc.Radiat. Transfer 175 90Google Scholar

    [14]

    Romh J E, Cacciani P, Taher F 2016 J. Mol.Spectrosc. 326 122Google Scholar

    [15]

    Yang S, Li J, Wang R 2017 Applied Optics and Photonics China Beijing, China, October 24, 2017 p61

    [16]

    You K, Zhang Y J, Wang L M, Li H B, He Y 2013 Adv. Mater. Res. 760 84

    [17]

    鲁一冰, 刘文清, 张玉钧, 张恺, 何莹, 尤坤, 李潇毅, 刘国华, 唐七星, 范博强, 余冬琪, 李梦琪 2019 光谱学与光谱分析 39 2657

    Lu Y B, Liu W Q, Zhang Y J, Zhang K, He Y, You K, Li X Y, Liu G H, Tang Q X, Fan B Q, Yu D Q, Li M Q 2019 Spectrosc. Spect. Anal. 39 2657

    [18]

    费业泰 2015 误差理论与数据处理 (北京: 机械工业出版社) 第83页

    Fei Y T 2015 Error Theory and Data Processing (Beijing: Machinery Industry Press) p83 (in Chinese)

    [19]

    Xin Z 2005 Pap. Reg. Sci. 8418 3

    [20]

    PogányA, Klein A, Ebert V 2015 J. Quant. Spectrosc. Radiat. Transfer 165 108Google Scholar

    [21]

    GoldensteinC S, Hanson R K 2015 J. Quant. Spectrosc. Radiat. Transfer 152 127Google Scholar

    [22]

    GoldensteinC S, Jeffries J B, Hanson R K 2013 J. Quant. Spectrosc. Radiat. Transfer 130 100Google Scholar

    [23]

    聂伟, 阚瑞峰, 许振宇, 杨晨光, 陈兵, 夏晖晖, 魏敏, 陈祥, 姚路, 李杭, 范雪丽, 胡佳屹 2017 物理学报 66 054207Google Scholar

    Nie W, Kan R F, Xu Z Y, Yang C G, Chen B, Xia H H, Wei M, Chen X, Yao L, Li H, Fan X L, Hu J Y 2017 Acta Phys.Sin. 66 054207Google Scholar

    [24]

    林洁丽 2001 博士学位论文 (武汉: 中国科学院研究生院 (武汉物理与数学研究所))

    Lin J L 2001 Ph. D. Dissertation (Wuhan: Chinese Academy of Sciences (Wuhan Institute of Physics and Mathematics)) (in Chinese)

  • [1] Pang Wei-Xu, Li Ning, Huang Xiao-Long, Kang Yang, Li Can, Fan Xu-Dong, Weng Chun-Sheng. Optimization of beam arrangement for tunable diode laser absorption tomography reconstruction based on fractional Tikhonov regularization. Acta Physica Sinica, 2023, 72(3): 037801. doi: 10.7498/aps.72.20221731
    [2] Zhao Rong, Zhou Bin, Liu Qi, Dai Ming-Lu, Wang Bu-Bin, Wang Yi-Hong. Online tomography algorithm based on laser absorption spectroscopy. Acta Physica Sinica, 2023, 72(5): 054206. doi: 10.7498/aps.72.20221935
    [3] Long Jiang-Xiong, Shao Li, Zhang Yu-Jun, You Kun, He Ying, Ye Qing, Sun Xiao-Quan. Measurement research of line intensity and self-broadening coefficient for NH3 spectra in 4296–4302 cm–1. Acta Physica Sinica, 2022, 71(16): 164204. doi: 10.7498/aps.71.20220504
    [4] Li Ning, Tu Xin, Huang Xiao-Long, Weng Chun-Sheng. Development of beam arrangement design for tunable diode laser absorption tomography reconstruction based on Tikhonov regularization parameter matrix. Acta Physica Sinica, 2020, 69(22): 227801. doi: 10.7498/aps.69.20201144
    [5] Li Jin-Feng, Wan Ting, Wang Teng-Fei, Zhou Wen-Hui, Xin Jie, Chen Chang-Shui. Electrons leakage from upper laser level to high energy levels in active regions of terahertz quantum cascade lasers. Acta Physica Sinica, 2019, 68(2): 021101. doi: 10.7498/aps.68.20181882
    [6] Zhou Kang, Li Hua, Wan Wen-Jian, Li Zi-Ping, Cao Jun-Cheng. Group velocity dispersion analysis of terahertz quantum cascade laser frequency comb. Acta Physica Sinica, 2019, 68(10): 109501. doi: 10.7498/aps.68.20190217
    [7] Wang Chuan-Wei, Li Ning, Huang Xiao-Long, Weng Chun-Sheng. Two-stage velocity distribution measurement from multiple projections by tunable diode laser absorption spectrum. Acta Physica Sinica, 2019, 68(24): 247801. doi: 10.7498/aps.68.20191223
    [8] Zhu Yong-Hao, Li Hua, Wan Wen-Jian, Zhou Tao, Cao Jun-Cheng. Far-field analysis of third-order distributed feedback terahertz quantum cascade lasers. Acta Physica Sinica, 2017, 66(9): 099501. doi: 10.7498/aps.66.099501
    [9] Zhou Chao, Zhang Lei, Li Jin-Song. Detection of atmospheric multi-component based on a single quantum cascade laser. Acta Physica Sinica, 2017, 66(9): 094203. doi: 10.7498/aps.66.094203
    [10] Nie Wei, Kan Rui-Feng, Xu Zhen-Yu, Yang Chen-Guang, Chen Bing, Xia Hui-Hui, Wei Min, Chen Xiang, Yao Lu, Li Hang, Fan Xue-Li, Hu Jia-Yi. Measurements of line strengths for some lines of ammonia in 6611-6618 cm-1. Acta Physica Sinica, 2017, 66(5): 054207. doi: 10.7498/aps.66.054207
    [11] Ma Yu-Fei, He Ying, Yu Xin, Yu Guang, Zhang Jing-Bo, Sun Rui. Research on high sensitivity detection of carbon monoxide based on quantum cascade laser and quartz-enhanced photoacoustic spectroscopy. Acta Physica Sinica, 2016, 65(6): 060701. doi: 10.7498/aps.65.060701
    [12] Ling Liu-Yi, Xie Pin-Hua, Lin Pan-Pan, Huang You-Rui, Qin Min, Duan Jun, Hu Ren-Zhi, Wu Feng-Cheng. A concentration retrieval method for incoherent broadband cavity-enhanced absorption spectroscopy based on O2-O2 absorption. Acta Physica Sinica, 2015, 64(13): 130705. doi: 10.7498/aps.64.130705
    [13] Wan Wen-Jian, Yin Rong, Tan Zhi-Yong, Wang Feng, Han Ying-Jun, Cao Jun-Cheng. Study of 2.9 THz quantum cascade laser based on bound-to-continuum transition. Acta Physica Sinica, 2013, 62(21): 210701. doi: 10.7498/aps.62.210701
    [14] Tan Zhi-Yong, Chen Zhen, Han Ying-Jun, Zhang Rong, Li Hua, Guo Xu-Guang, Cao Jun-Cheng. Experimental realization of wireless transmission based on terahertz quantumcascade laser. Acta Physica Sinica, 2012, 61(9): 098701. doi: 10.7498/aps.61.098701
    [15] Tang Yuan-Yuan, Liu Wen-Qing, Kan Rui-Feng, Zhang Yu-Jun, Liu Jian-Guo, Xu Zhen-Yu, Shu Xiao-Wen, Zhang Shuai, He Ying, Geng Hui, Cui Yi-Ben. Spectroscopy processing for the NO measurement based on the room-temperature pulsed quantum cascade laser. Acta Physica Sinica, 2010, 59(4): 2364-2368. doi: 10.7498/aps.59.2364
    [16] Li Hua, Han Ying-Jun, Tan Zhi-Yong, Zhang Rong, Cao Jun-Cheng. Device fabrication of semi-insulating surface-plasmon terahertz quantum-cascade lasers. Acta Physica Sinica, 2010, 59(3): 2169-2172. doi: 10.7498/aps.59.2169
    [17] Li Ning, Weng Chun-Sheng. Gas concentration and temperature reconstruction by genetic simulated annealing algorithm based on multi-wavelengths diode laser absorption spectroscopy. Acta Physica Sinica, 2010, 59(10): 6914-6920. doi: 10.7498/aps.59.6914
    [18] Chang Jun, Li Hua, Han Ying-Jun, Tan Zhi-Yong, Cao Jun-Cheng. Material growth and characterization of terahertz quantum-cascade lasers. Acta Physica Sinica, 2009, 58(10): 7083-7087. doi: 10.7498/aps.58.7083
    [19] Xu Gang-Yi, Li Ai-Zhen. Interface phonons in the active core of a quantum cascade laser. Acta Physica Sinica, 2007, 56(1): 500-506. doi: 10.7498/aps.56.500
    [20] Lin Gui-Jiang, Zhou Zhi-Wen, Lai Hong-Kai, Li Cheng, Chen Song-Yan, Yu Jin-Zhong. Energy band design for Si/SiGe quantum cascade laser. Acta Physica Sinica, 2007, 56(7): 4137-4142. doi: 10.7498/aps.56.4137
Metrics
  • Abstract views:  7686
  • PDF Downloads:  86
  • Cited By: 0
Publishing process
  • Received Date:  03 December 2019
  • Accepted Date:  14 January 2020
  • Published Online:  05 April 2020

/

返回文章
返回