Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Terahertz tunable seven-band perfect absorber based on high frequency detection function of Dirac semi-metallic nanowires

Wenqiang Lu Yingting Yi Qianju Song Zigang Zhou Yougen Yi Qingdong Zeng Zao Yi

Citation:

Terahertz tunable seven-band perfect absorber based on high frequency detection function of Dirac semi-metallic nanowires

Wenqiang Lu, Yingting Yi, Qianju Song, Zigang Zhou, Yougen Yi, Qingdong Zeng, Zao Yi
PDF
Get Citation
  • This study introduces a tunable perfect absorber in the terahertz range based on Dirac semimetal nanowires, featuring high sensitivity, quality factor, and dual functionality. The absorber achieves perfect absorption across seven bands within the range of 0 - 14.5 THz: f1=5.032 THz (84.43%), f2=5.859 THz (96.23%), f3=7.674 THz (91.36%), f4=9.654 THz (99.02%), f5=11.656 THz (93.84%), f6=12.514 THz (98.47%), and f7=14.01 THz (97.32%). To ensure structural stability during design, the periodicity of the wire array structure was carefully considered. Verification of the absorber's performance was conducted through impedance matching calculations. Analysis of the surface electric and magnetic fields at resonance frequencies elucidates the underlying physical mechanisms governing the absorber's characteristics. Quality factors (Q) for the seven resonance points were computed, with a maximum Q of 219.41 observed. Further investigations by varying the external refractive index reveal maximum sensitivity and figure of merit (FOM) values of 5421.43 (GHz/RIU) and 35.204 (1/RIU), respectively. Then, by discussing the influence of key parameters on the device, we conclude that the device can achieve the choice of dual fixed performance. Dynamic modulation capabilities were demonstrated by varying the Dirac semimetal's Fermi energy (BDS). Additionally, examination of the device's angle of incidence dependence highlighted stable performance in the mid-low frequency range but cautioned about high-frequency range, necessitating careful consideration in practical applications. In conclusion, the proposed absorber holds significant promise for imaging, sensing, and detection applications, offering valuable insights for optoelectronic device design.
  • [1]

    Li J, Wang G, Yue Z, Liu J, Li J, Zheng C, Zhang Y, Zhang Y, Yao J 2022 Opto-Electron Adv 5 210062.

    [2]

    Zhang X J, Lu Y Q, Chen Y F, Zhu Y Y, Zhu S N 2017 Acta Phys. Sin. 66 148705 (张学进, 陆延青, 陈延峰, 朱永元, 祝世宁 2017 物理学报 66 148705)

    [3]

    Huang R T, Li J S 2023 Acta Phys. Sin. 72 054203(黄若彤, 李九生 2023物理学报72 054203)

    [4]

    Yue Z, Li J, Li J, Zheng C, Liu J, Wang G, Xu H, Chen M, Zhang Y, Zhang Y, Yao J 2022 Opto-Electron Sci 1 210014.

    [5]

    Li W X, Zhao W C, Cheng S B, Yang W X, Yi Z, Li G F, Zeng L C, Li H L, Wu P H, Cai S S 2023 Surfaces and Interfaces 40 103042.

    [6]

    Sun W F, Wang X K, Zhang Y 2022 Opto-Electron Sci 1 220003.

    [7]

    Li W X, Yi Y T, Yang H, Cheng S B, Yang W X, Zhang H F, Yi Z, Yi Y G, Li H L 2023 Commun. Theor. Phys. 75 045503.

    [8]

    Chen J, Yang M S, Li Y D, Cheng D K, Guo G L, Jiang L, Zhang H T, Song X X, Ye Y X, Ren Y P, Ren X D, Zhang Y T, Yao J Q 2019 Acta Phys. Sin. 68 247802(陈俊, 杨茂生, 李亚迪, 程登科, 郭耿亮, 蒋林, 张海婷, 宋效先, 叶云霞, 任云鹏, 任旭东, 张雅婷, 姚建铨 2019 物理学报 68 247802)

    [9]

    Zhao H, Wang X K, Liu S T, Zhang Y 2023 Opto-Electron Adv 6 220012.

    [10]

    Song H J, Nagatsuma T 2011 IEEE Transactions on Terahertz Science and Technology 1 256-263.

    [11]

    Gigli C, Leo G 2022 Opto-Electron Adv 5 210093.

    [12]

    Li F, Li Y, Tang T, Liao Y, Lu Y, Liu X, Wen Q 2022 Journal of Alloys and Compounds 928 167232.

    [13]

    Zhu J, Xiong J Y 2023 Measurement 220 113302.

    [14]

    Cheng Y Z, Withayachumnankul W, Upadhyay A, Headland D, Nie Y, Gong R Z, Bhaskaran M, Sriram S, Abbott D 2015 Advanced Optical Materials 3 376.

    [15]

    Li W X, Cheng S B, Zhang H F, Yi Z, Tang B, Ma C, Wu P H, Zeng Q D, Raza R 2024 Commun. Theor. Phys. 76 065701.

    [16]

    Chen H T, Padilla W J, Zide J M O, Gossard A C, Taylor A J, Averitt R D 2006 Nature 444 597.

    [17]

    Cao T, Lian M, Chen X, Mao L, Liu K, Jia J, Su Y, Ren H, Zhang S, Xu Y, Chen J, Tian Z, Guo D M 2022 Opto-Electron Sci 1 210010.

    [18]

    Shen X P, Cui T J, Ye J X 2012 Acta Phys. Sin. 61 058101(沈晓鹏, 崔铁军, 叶建祥 2012物理学报 61 058101).

    [19]

    He M Y, Wang Q Q, Zhang H, Xiong J, Liu X P, Wang J Q 2024 Phys. Scr. 99 035506.

    [20]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402.

    [21]

    Zhan Y, Yin H, Wang J, Yao H, Fan C 2022 Results in Optics 8 100255.

    [22]

    Mao Y, Zhang H, Xiong J, Liu X P, Wang Q Q, Wang J Q 2024 J. Phys. D: Appl. Phys. 57 255111.

    [23]

    Ullah K, Meng Y, Sun Y, Yang Y, Wang X, Wang A, Wang X, Xiu F, Shi Y, Wang F 2020 Appl. Phys. Lett. 117 011102.

    [24]

    Moll P J W, Nair N L, Helm T, Potter A C, Kimchi I, Vishwanath A, Analytis J G 2016 Nature 535 266-270.

    [25]

    Borisenko S, Gibson Q, Evtushinsky D, Zabolotnyy V, Büchner B, Cava R J 2014 Phys. Rev. Lett 113 027603.

    [26]

    Cheng S B, Li W X, Zhang H F, Akhtar M N, Yi Z, Zeng Q D, Ma C, Sun T Y, Wu P H, Ahmad S 2024 Optics Communications 569 130816.

    [27]

    Chen Z Y, Cheng S B, Zhang H F, Yi Z, Tang B, Chen J, Zhang J G, Tang C J 2024 Physics Letters A 517 129675.

    [28]

    Li W X, Ma J, Zhang H F, Cheng S B, Yang W X, Yi Z, Yang H, Zhang J G, Wu X W, Wu P H 2023 Phys. Chem. Chem. Phys. 25 8489-8496.

    [29]

    Liang S R, Cheng S B, Zhang H F, Yang W X, Yi Z, Zeng Q D, Tang B, Wu P H, Ahmad S, Sun T Y 2024 Ceramics International 50 23611–23620.

    [30]

    Li W X, Zhao W C, Cheng S B, Zhang H F, Yi Z, Sun T Y, Wu P H, Zeng Q D, Raza R 2024 Optics and Lasers in Engineering 181 108368.

    [31]

    Ma J, Wu P H, Li W X, Liang S R, Shangguan Q Y, Cheng S B, Tian Y H, Fu J Q, Zhang L B 2023 Diamond and Related Materials 136 109960.

    [32]

    Zhu J, Xiong J Y 2023 Optics Express 31 36677.

    [33]

    Huang S L, Chen Y, Yu C C, Chen S J, Zhou Z K, Liang J, Dai W 2024 Chinese Journal of Physics 89 740-747.

    [34]

    Fu R, Chen K X, Li Z L, Yu S H, Zheng G X 2022 Opto-Electron Sci 1 220011.

    [35]

    Wang J L, Hassan M, Liu J W, Yu S H 2018 Advanced Materials 30 1803430.

    [36]

    Cheng C, Gonela R K, Gu Q, Haynie D T 2005 Nano Lett 5 175.

    [37]

    Qu T, Zhao Y, Li Z, Wang P, Cao S, Xu Y, Li Y, Chen A 2016 Nanoscale 8 3268.

    [38]

    Shangguan Q Y, Zhao Y, Song Z J, Wang J, Yang H, Chen J, Liu C, Cheng S B, Yang W X, Yi Z 2022 Diamond & Related Materials 128 109273.

    [39]

    Li W X, Liu Y H, Ling L, Sheng Z X, Cheng S B, Yi Z, Wu P H, Zeng Q D, Tang B, Ahmad S 2024 Surfaces and Interfaces 48 104248.

    [40]

    Liang S, Xu F, Li W, Yang W, Cheng S, Yang H, Chen J, Yi Z, Jiang P 2023 Applied Thermal Engineering 232 121074.

    [41]

    Zhang Y J, Yi Y T, Li W X, Liang S R, Ma J, Cheng S B, Yang W X, Yi Y G 2023 Coatings13 531.

    [42]

    Huang X M, Chen Y, Chen S J, Yang K, Liang J, Zhou Z K, Dai W 2023 Results in Physics 47 106364.

    [43]

    Zeng C, Lu H, Mao D, Du Y, Hua H, Zhao W, Zhao J 2022 Opto-Electron Adv 5 200098.

    [44]

    Li W X, Liu M S, Cheng S B, Zhang H F, Yang W X, Yi Z, Zeng Q D, Tang B, Ahmad S, Sun T Y 2024 Diamond and Related Materials 142 110793.

    [45]

    Liang S, Xu F, Yang H, Cheng S, Yang W, Yi Z, Song Q, Wu P, Chen J, Tang C 2023 Optics & Laser Technology 158 108789.

    [46]

    Shangguan Q, Chen Z, Yang H, Cheng S, Yang W, Yi Z, Wu X, Wang S, Yi Y, Wu P 2022 Sensors 22 6483.

    [47]

    Shangguan Q, Chen H, Yang H, Liang S, Zhang Y J, Cheng S B, Yang W X, Yi Z, Luo Y, Wu P H 2022 Diamond & Related Materials 125 108973.

    [48]

    Sourav A, Li Z, Huang Z, Botcha V D, Hu C, Ao J P, Peng Y, Kuo H C, Wu J, Liu X, Ang K W 2018 Advanced Optical Materials 6 1800461.

    [49]

    Piper J R, Liu V, Fan S 2014 Appl. Phys. Lett. 104 251110.

    [50]

    Li H, Qin M, Wang L, Zhai X, Ren R, Hu J 2017 Optics Express 25 31612.

    [51]

    Wang Y, Cheng W, Qin J, Han Z 2019 Optics Communications 434 163-166.

    [52]

    Zhou K, Cheng Q, Lu L, Li B, Song J, Luo Z 2020 Optics Express 28 1647-1656.

    [53]

    Li W, Xu F, Cheng S, Yang W, Liu B, Liu M, Yi Z, Tang B, Chen J, Sun T 2024 Optics & Laser Technology 169 110186.

    [54]

    Zheng W, Fan F, Chen M, Bai J J, Chang S J 2017 Infrared Laser Eng 46 420003.

    [55]

    Pan W, Yan Y, Ma Y, Shen D 2019 Optics Communications 431 115-119.

    [56]

    Lu W, Wu P, Bian L, Yan J, Yi Z, Liu M, Tang B, Li G, Liu C 2024 Optics & Laser Technology 174 110650.

    [57]

    Chen T, Jiang W, Yin X 2021 Superlattices and Microstructures 154 106898.

  • [1] Zhang Xiang, Wang Yue, Zhang Wan-Ying, Zhang Xiao-Ju, Luo Fan, Song Bo-Chen, Zhang Kuang, Shi Wei. Narrow band absorption and sensing properties of the THz metasurface based on single-walled carbon nanotubes. Acta Physica Sinica, doi: 10.7498/aps.73.20231357
    [2] Luan Jia-Qi, Zhang Ya-Jie, Chen Yu, Gao Ding-Shan, Li Pei-Li, Li Jia-Qi, Li Jia-Qi. Genetic algorithm based terahertz multifunctional reconfigurable Dirac semi-metallic coded metasurface. Acta Physica Sinica, doi: 10.7498/aps.73.20240225
    [3] Huang Ruo-Tong, Li Jiu-Sheng. Terahertz multibeam modulation reflection-coded metasurface. Acta Physica Sinica, doi: 10.7498/aps.72.20221962
    [4] Jin Jia-Sheng, Ma Cheng-Ju, Zhang Yao, Zhang Yue-Bin, Bao Shi-Qian, Li Mi, Li Dong-Ming, Liu Ming, Liu Qian-Zhen, Zhang Yi-Xin. Switchable multifunctional terahertz metamaterial with slow-light and absorption functions based on phase change materials. Acta Physica Sinica, doi: 10.7498/aps.72.20222336
    [5] Yu Bo, Zhuang Shu-Lei, Wang Zheng-Xin, Wang Man-Shi, Guo Lan-Jun, Li Xin-Yu, Guo Wen-Rui, Su Wen-Ming, Gong Cheng, Liu Wei-Wei. Nano-printing technology based double-spiral terahertz tunable metasurface. Acta Physica Sinica, doi: 10.7498/aps.71.20212408
    [6] Chen Wen-Bo, Chen He-Ming. Terahertz liquid crystal phase shifter based on metamaterial composite structure. Acta Physica Sinica, doi: 10.7498/aps.71.20212400
    [7] Zhang Jian-Guo, Yi Zao, Kang Yong-Qiang, Ren Hao, Wang Wen-Yan, Zhou Jing-Fan, Hao Hui-Zhen, Chang Hui-Dong, Gao Ying-Hao, Chen Ya-Hui, Li Yan-Na. A high-efficiency wideband tunable polarization conversion metasurface assisted by localized surface plasmon resonances. Acta Physica Sinica, doi: 10.7498/aps.70.20220288
    [8] Zhang Jian-Guo,  Yi Zao,  Kang Yong-Qiang,  Ren Hao,  Wang Wen-Yan,  Zhou Jing-Fan,  Hao Hui-Zhen,  Chang Hui-Dong,  Gao Ying-Hao,  Chen Ya-Hui,  Li Yan-Na. A high-efficiency wideband tunable polarization conversion metasurface assisted by the localized surface plasmon resonances. Acta Physica Sinica, doi: 10.7498/aps.71.20220288
    [9] Ge Hong-Yi, Li Li, Jiang Yu-Ying, Li Guang-Ming, Wang Fei, Lü Ming, Zhang Yuan, Li Zhi. Double-opening metal ring based terahertz metamaterial absorber sensor. Acta Physica Sinica, doi: 10.7498/aps.71.20212303
    [10] Wang Yue, Cui Zi-Jian, Zhang Xiao-Ju, Zhang Da-Chi, Zhang Xiang, Zhou Tao, Wang Xuan. Research progress of metamaterials powered advanced terahertz biochemical sensing detection techniques. Acta Physica Sinica, doi: 10.7498/aps.70.20211752
    [11] Zhou Lu, Zhao Guo-Zhong, Li Xiao-Nan. Broadband terahertz vortex beam generation based on metasurface of double-split resonant rings. Acta Physica Sinica, doi: 10.7498/aps.68.20182147
    [12] Chen Jun, Yang Mao-Sheng, Li Ya-Di, Cheng Deng-Ke, Guo Geng-Liang, Jiang Lin, Zhang Hai-Ting, Song Xiao-Xian, Ye Yun-Xia, Ren Yun-Peng, Ren Xu-Dong, Zhang Ya-Ting, Yao Jian-Quan. Tunable terahertz wave broadband absorber based on metamaterial. Acta Physica Sinica, doi: 10.7498/aps.68.20191216
    [13] Zhai Shi-Long, Wang Yuan-Bo, Zhao Xiao-Peng. A kind of tunable acoustic metamaterial for low frequency absorption. Acta Physica Sinica, doi: 10.7498/aps.68.20181908
    [14] Wang Yue, Leng Yan-Bing, Wang Li, Dong Lian-He, Liu Shun-Rui, Wang Jun, Sun Yan-Jun. Tunable grapheme amplitude based broadband electromagnetically-induced-transparency-like metamaterial. Acta Physica Sinica, doi: 10.7498/aps.67.20180114
    [15] Zhang Yin, Feng Yi-Jun, Jiang Tian, Cao Jie, Zhao Jun-Ming, Zhu Bo. Graphene based tunable metasurface for terahertz scattering manipulation. Acta Physica Sinica, doi: 10.7498/aps.66.204101
    [16] Zhang Hui-Yun, Huang Xiao-Yan, Chen Qi, Ding Chun-Feng, Li Tong-Tong, Lü Huan-Huan, Xu Shi-Lin, Zhang Xiao, Zhang Yu-Ping, Yao Jian-Quan. Tunable terahertz absorber based on complementary graphene meta-surface. Acta Physica Sinica, doi: 10.7498/aps.65.018101
    [17] Zhang Yu-Ping, Li Tong-Tong, Lü Huan-Huan, Huang Xiao-Yan, Zhang Hui-Yun. Study on sensing characteristics of I-shaped terahertz metamaterial absorber. Acta Physica Sinica, doi: 10.7498/aps.64.117801
    [18] Dai Yu-Han, Chen Xiao-Lang, Zhao Qiang, Zhang Ji-Hua, Chen Hong-Wei, Yang Chuan-Ren. Tunable split ring resonators in terahertz band. Acta Physica Sinica, doi: 10.7498/aps.62.064101
    [19] Liu Ran, Shi Jin-Hui, Plum Eric, Fedotov Vassili, Zheludev Nikolay. Tuning Fano resonances in a planar metamaterial. Acta Physica Sinica, doi: 10.7498/aps.61.154101
    [20] Ai Fen, Bai Yang, Xu Fang, Qiao Li-Jie, Zhou Ji. Research on the tunable left-handed properties of split-ring resonator with ferrite substrate. Acta Physica Sinica, doi: 10.7498/aps.57.4189
Metrics
  • Abstract views:  33
  • PDF Downloads:  1
  • Cited By: 0
Publishing process
  • Available Online:  23 December 2024

/

返回文章
返回