-
Recently, the terahertz waves have attracted increasing attention due to the growing practical applications in astronomy, communication, imaging, spectroscopy, etc. While the metasurfaces, with extraordinary ability to control the electromagnetic waves, have been increasingly employed to tailor their interaction with terahertz waves and offer fascinating capabilities unavailable from natural materials. However, there are more and more requirements for the dynamical tune of the responses to electromagnetic components for the practical applications such as the terahertz stealth in variable environment. As such, considerable attention to terahertz frequencies has been focused on the tunable metasurfaces. Graphene has been proved to be a good candidate to meet the requirements for tunable electromagnetic properties, especially at the terahertz frequencies. In this paper, we design a tunable terahertz metasurface and achieve dynamically manipulating the scattering of terahertz waves. The metasurface is constructed by embedding double graphene layers with voltage control into the polyimide substrate of the diffuse scattering metasurface, which consists of the random array of rectangular metal patches, polyimide substrate, and metal ground. By adjusting the bias voltage on the double graphene layers, the terahertz scattering distribution can be controlled. At zero bias, the conductivity of graphene approaches to zero, and the random phase distribution is formed over the metasurface so that the reflected terahertz waves are dispersed into the upper half space with much lower intensity from various directions. With the bias voltage increasing, the conductivity of graphene increases, then the changeable range of the phase over the metasurface can be changed from 2up to up/4. As a result, the random phase distribution of the metasurface is gradually destroyed and increasingly transformed into a uniform phase distribution, resulting in the scattering characteristic changes from the approximate diffuse reflection to the specular reflection. The expected performance of proposed metasurface is demonstrated through the full-wave simulation. The corresponding results show that the terahertz scattering pattern of the metasurface is gradually varied from diffuse scattering to specular reflection by dynamically increasing the Fermi level of graphene through increasing the bias voltage. Moreover, the performance of the proposed metasurface is insensitive to the polarization of the incident wave. All of these indicate that the proposed metasurface can continuously control the scattering characteristics of terahertz wave. Thus, the proposed metasurface can be well integrated into the changing environment, and may offer potential stealth applications at terahertz frequencies. Moreover, as we employ complete graphene layers as the controlling elements instead of structured graphene layers in other metamaterial designs, the proposed metasurface may provide an example of relating the theory to possible experimental realization in tunable graphene metasurfaces.
-
Keywords:
- graphene /
- terahertz /
- tunable /
- metasurface
[1] Sirtori C 2002 Nature 417 132
[2] Williams G P 2005 Rep. Prog. Phys. 69 301
[3] Tonouchi M 2007 Nature Photon. 1 97
[4] Song H J, Nagatsuma T 2011 IEEE Trans. Terahertz Sci. Technol. 1 256
[5] Liu X, Tyler T, Starr T, Starr A F, Jokerst N M, Padilla W J 2011 Phys. Rev. Lett. 107 045901
[6] Bao D, Shen X P, Cui T J 2015 Acta Phys. Sin. 64 228701 (in Chinese)[鲍迪, 沈晓鹏, 崔铁军2015物理学报64 228701]
[7] Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333
[8] Holloway C L, Kuester E F, Gordon J A, O' Hara J, Booth J, Smith D R 2012 IEEE Antenn. Propag. Magazine 54 10
[9] Zhao J M, Sima B Y, Jia N, Wang C, Zhu B, Jiang T, Feng Y J 2016 Opt. Express 24 27849
[10] Sun S, He Q, Xiao S, Xu Q, Li X, Zhou L 2012 Nat. Mater. 11 426
[11] Zhu B, Feng Y J 2015 IEEE Trans. Antennas Propag. 63 5500
[12] Zhu B, Chen K, Jia N, Sun L, Zhao J M, Jiang T, Feng Y J 2014 Sci. Rep. 4 4971
[13] Yang L, Fan F, Chen M, Zhang X Z, Chang S J 2016 Acta Phys. Sin. 65 080702 (in Chinese)[杨磊, 范飞, 陈猛, 张选洲, 常胜江2016物理学报65 080702]
[14] Liu S, Cui T J, Xu Q, Bao D, Du L L, Wan X, Tang W X, Ouyang C M, Zhou X Y, Yuan H, Ma H F, Jiang W X, Han J G, Zhang W L, Cheng Q 2016 Light:Sci. Appl. 5 e16076
[15] Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light:Sci. Appl. 3 e218
[16] Gao L H, Cheng Q, Yang J, Ma S J, Zhao J, Liu S, Chen H B, He Q, Jiang W X, Ma H F, Wen Q Y, Liang L J, Jin B B, Liu W W, Zhou L, Yao J Q, Wu P H, Cui T J 2015 Light:Sci. Appl. 4 e324
[17] Zhang Y, Liang L J, Yang J, Feng Y J, Zhu B, Zhao J, Jiang T, Jin B B, Liu W W 2016 Sci. Rep. 6 26875
[18] Chen K, Feng Y J, Yang Z J, Cui L, Zhao J M, Zhu B, Jiang T 2016 Sci. Rep. 6 35968
[19] Liang L J, Qi M Q, Yang J, Shen X P, Zhai J Q, Xu W Z, Jin B B, Liu W W, Feng Y J, Zhang C H, Lu H, Chen H T, Kang L, Xu W W, Chen J, Cui T J, Wu P H, Liu S G 2015 Adv. Opt. Mater. 3 1374
[20] Sun S, Yang K Y, Wang C M, Juan T K, Chen W T, Liao C Y, He Q, Xiao S Y, kung W T, Guo G Y, Zhou L, Tsai D P 2012 Nano Lett. 12 6223
[21] Chen H T, Padilla W J, Zide J M, Gossard A C, Taylor A J, Averitt R D 2006 Nature 444 597
[22] Feng W, Zhang R, Cao J C 2015 Acta Phys. Sin. 64 229501 (in Chinese)[冯伟, 张戎, 曹俊诚2015物理学报64 229501]
[23] Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A, Shen Y R, Wang F 2011 Nat. Nanotechnol. 6 630
[24] Lee S H, Choi M, Kim T T, Lee S, Liu M, Yin X, Choi H K, Lee S S, Choi C G, Choi S Y, Zhang X, Min B 2012 Nat. Mater. 11 936
[25] Zhang Y, Feng Y J, Zhu B, Zhao J M, Jiang T 2014 Opt. Express 22 22743
[26] Zhang Y, Feng Y J, Zhu B, Zhao J M, Jiang T 2015 Opt. Express 23 27230
[27] Xu B Z, Gu C Q, Li Z, Niu Z Y 2013 Opt. Express 21 23803
[28] Zhang H Y, Huang X Y, Chen Q, Ding C F, Li T T, L H H, Xu S L, Zhang X, Zhang Y P, Yao J Q 2016 Acta Phys. Sin. 65 018101 (in Chinese)[张会云, 黄晓燕, 陈琦, 丁春峰, 李彤彤, 吕欢欢, 徐世林, 张晓, 张玉萍, 姚建铨2016物理学报65 018101]
[29] Hanson G W 2008 J. Appl. Phys. 103 064302
[30] Kim J Y, Lee C, Bae S, Kim K S, Hong B H, Choi E J 2011 Appl. Phys. Lett. 98 201907
[31] Gmez-Daz J S, Perruisseau-Carrier J 2013 Opt. Express 21 15490
[32] Rodriguez B S, Yan R, Kelly M, Fang T, Tahy K, Hwang W S, Jena D, Liu L, Xing H L G 2012 Nat. Commun. 3 780
-
[1] Sirtori C 2002 Nature 417 132
[2] Williams G P 2005 Rep. Prog. Phys. 69 301
[3] Tonouchi M 2007 Nature Photon. 1 97
[4] Song H J, Nagatsuma T 2011 IEEE Trans. Terahertz Sci. Technol. 1 256
[5] Liu X, Tyler T, Starr T, Starr A F, Jokerst N M, Padilla W J 2011 Phys. Rev. Lett. 107 045901
[6] Bao D, Shen X P, Cui T J 2015 Acta Phys. Sin. 64 228701 (in Chinese)[鲍迪, 沈晓鹏, 崔铁军2015物理学报64 228701]
[7] Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333
[8] Holloway C L, Kuester E F, Gordon J A, O' Hara J, Booth J, Smith D R 2012 IEEE Antenn. Propag. Magazine 54 10
[9] Zhao J M, Sima B Y, Jia N, Wang C, Zhu B, Jiang T, Feng Y J 2016 Opt. Express 24 27849
[10] Sun S, He Q, Xiao S, Xu Q, Li X, Zhou L 2012 Nat. Mater. 11 426
[11] Zhu B, Feng Y J 2015 IEEE Trans. Antennas Propag. 63 5500
[12] Zhu B, Chen K, Jia N, Sun L, Zhao J M, Jiang T, Feng Y J 2014 Sci. Rep. 4 4971
[13] Yang L, Fan F, Chen M, Zhang X Z, Chang S J 2016 Acta Phys. Sin. 65 080702 (in Chinese)[杨磊, 范飞, 陈猛, 张选洲, 常胜江2016物理学报65 080702]
[14] Liu S, Cui T J, Xu Q, Bao D, Du L L, Wan X, Tang W X, Ouyang C M, Zhou X Y, Yuan H, Ma H F, Jiang W X, Han J G, Zhang W L, Cheng Q 2016 Light:Sci. Appl. 5 e16076
[15] Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light:Sci. Appl. 3 e218
[16] Gao L H, Cheng Q, Yang J, Ma S J, Zhao J, Liu S, Chen H B, He Q, Jiang W X, Ma H F, Wen Q Y, Liang L J, Jin B B, Liu W W, Zhou L, Yao J Q, Wu P H, Cui T J 2015 Light:Sci. Appl. 4 e324
[17] Zhang Y, Liang L J, Yang J, Feng Y J, Zhu B, Zhao J, Jiang T, Jin B B, Liu W W 2016 Sci. Rep. 6 26875
[18] Chen K, Feng Y J, Yang Z J, Cui L, Zhao J M, Zhu B, Jiang T 2016 Sci. Rep. 6 35968
[19] Liang L J, Qi M Q, Yang J, Shen X P, Zhai J Q, Xu W Z, Jin B B, Liu W W, Feng Y J, Zhang C H, Lu H, Chen H T, Kang L, Xu W W, Chen J, Cui T J, Wu P H, Liu S G 2015 Adv. Opt. Mater. 3 1374
[20] Sun S, Yang K Y, Wang C M, Juan T K, Chen W T, Liao C Y, He Q, Xiao S Y, kung W T, Guo G Y, Zhou L, Tsai D P 2012 Nano Lett. 12 6223
[21] Chen H T, Padilla W J, Zide J M, Gossard A C, Taylor A J, Averitt R D 2006 Nature 444 597
[22] Feng W, Zhang R, Cao J C 2015 Acta Phys. Sin. 64 229501 (in Chinese)[冯伟, 张戎, 曹俊诚2015物理学报64 229501]
[23] Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A, Shen Y R, Wang F 2011 Nat. Nanotechnol. 6 630
[24] Lee S H, Choi M, Kim T T, Lee S, Liu M, Yin X, Choi H K, Lee S S, Choi C G, Choi S Y, Zhang X, Min B 2012 Nat. Mater. 11 936
[25] Zhang Y, Feng Y J, Zhu B, Zhao J M, Jiang T 2014 Opt. Express 22 22743
[26] Zhang Y, Feng Y J, Zhu B, Zhao J M, Jiang T 2015 Opt. Express 23 27230
[27] Xu B Z, Gu C Q, Li Z, Niu Z Y 2013 Opt. Express 21 23803
[28] Zhang H Y, Huang X Y, Chen Q, Ding C F, Li T T, L H H, Xu S L, Zhang X, Zhang Y P, Yao J Q 2016 Acta Phys. Sin. 65 018101 (in Chinese)[张会云, 黄晓燕, 陈琦, 丁春峰, 李彤彤, 吕欢欢, 徐世林, 张晓, 张玉萍, 姚建铨2016物理学报65 018101]
[29] Hanson G W 2008 J. Appl. Phys. 103 064302
[30] Kim J Y, Lee C, Bae S, Kim K S, Hong B H, Choi E J 2011 Appl. Phys. Lett. 98 201907
[31] Gmez-Daz J S, Perruisseau-Carrier J 2013 Opt. Express 21 15490
[32] Rodriguez B S, Yan R, Kelly M, Fang T, Tahy K, Hwang W S, Jena D, Liu L, Xing H L G 2012 Nat. Commun. 3 780
Catalog
Metrics
- Abstract views: 8644
- PDF Downloads: 601
- Cited By: 0