Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A kind of tunable acoustic metamaterial for low frequency absorption

Zhai Shi-Long Wang Yuan-Bo Zhao Xiao-Peng

Citation:

A kind of tunable acoustic metamaterial for low frequency absorption

Zhai Shi-Long, Wang Yuan-Bo, Zhao Xiao-Peng
PDF
HTML
Get Citation
  • Low frequency noise is always an important factor affecting people’s quality of life. At present, the most widely used sound absorbing materials include polyurethane foam, trimeric amine, mineral cotton, textiles, cotton and special sound insulation materials. However, the sizes of these materials are generally large, and the sound absorption efficiencies are often low, especially in a low frequency range (below 2000 Hz). Acoustic metamaterial is a kind of artificial composite material, which is constructed by microunits whose dimensions are much smaller than the working wavelength. The results show that if the strong coupling condition between the resonant scatter and the waveguide is satisfied, the sound energy flowing through the metamaterial will be completely offset by the internal loss of the resonant scatter. Therefore, it is believed that this kind of acoustic metamaterial can solve the absorption problem of low-frequency sound waves. In order to solve this problem, researchers have conducted a lot of exploratory researches. However, most of the structural units that are constructed with acoustic metamaterials are passive, that is, once the material is processed and shaped, its properties are fixed and cannot be changed. This defect greatly limits the development of acoustical metamaterials, so it is urgent to study acoustical metamaterials whose material properties and the working frequency bands are flexibly adjustable. Although tunable acoustic metamaterials have been studied, few people have extended this research to the field of low-frequency tunable sound absorption. In our previous work, we systematically studied the acoustic properties of two kinds of acoustic artificial " meta-atoms”, namely, open hollow sphere model with negative equivalent elastic modulus and hollow tube model with negative equivalent mass density. The research shows that these two kinds of " meta-atoms” both have obvious sound absorption effect. According to our previous studies, in this paper we couple these two kinds of " meta-atoms” into a whole, and design a new nested model of open loop. The model has the advantages of simple structure and easy preparation. Through theoretical analysis, numerical simulation and experimental testing, it is found that the strong coupling resonance effects between these " meta-atoms” can be excited by the low frequency incident acoustic wave in the nested structure, thus achieving nearly perfect sound energy absorption. In addition, the relative impedance of the metamaterial can be changed by simply rotating the inner splitting ring around the axis, therefore the position of the absorption peak can be freely controlled in a wide frequency band. Because of its deep sub-wavelength size, the metamaterial is very useful for miniaturizing and integrating the low-frequency acoustic absorption devices. What is more, this model also lays a foundation for designing the broadband absorbers.
      Corresponding author: Zhai Shi-Long, shilongzhai@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11804278, 11174234, 51272215) and the Fundamental Research Fund for the Central Universities, China (Grant No. G2017KY0105).
    [1]

    Rahimabady M, Statharas E C, Yao K, Mirshekarloo M S, Chen S, Tay F E H 2017 Appl. Phys. Lett. 111 241601Google Scholar

    [2]

    Gwon J G, Kim S K, Kim J H 2016 Mater. Des. 89 448Google Scholar

    [3]

    Xue B, Li R, Deng J, Zhang J 2016 Ind. Eng. Chem. Res. 55 3982Google Scholar

    [4]

    Padhye R, Nayak R 2016 Acoustic Textiles (Singapore: Springer)

    [5]

    丁昌林, 董怡宝, 赵晓鹏 2018 物理学报 67 194301Google Scholar

    Ding C L, Dong Y B, Zhao X P 2018 Acta Phys. Sin. 67 194301Google Scholar

    [6]

    Liu Z Y, Zhang X X, Mao Y W, Zhu Y Y, Yang Z Y, Chan C T, Sheng P 2000 Science 289 1734Google Scholar

    [7]

    Fang N, Xi D J, Xu J Y, Ambati M, Srituravanich W, Sun C, Zhang X 2006 Nat. Mater. 5 452Google Scholar

    [8]

    Lee S H, Park C M, Seo Y M, Wang Z G, Kim C K 2010 Phys. Rev. Lett. 104 054301Google Scholar

    [9]

    Li Y, Liang B, Zou X Y, Cheng J C 2013 Appl. Phys. Lett. 103 063509Google Scholar

    [10]

    Zhai S L, Zhao X P, Liu S, Shen F L, Li L L, Luo C R 2016 Sci. Rep. 6 32388Google Scholar

    [11]

    Zhai S L, Chen H J, Ding C L, Li L L, Shen F L, Luo C R, Zhao X P 2016 J. Phys. D: Appl. Phys. 49 225302Google Scholar

    [12]

    Ma G C, Fan X Y, Ma F Y, de Rosny J, Sheng P, Fink M 2018 Nat. Phys. 14 608Google Scholar

    [13]

    Xu Y, Li Y, Lee R K, Yariv A 2000 Phys. Rev. E 62 7389Google Scholar

    [14]

    Yang Z, Mei J, Yang M, Chan N H, Sheng P 2008 Phys. Rev. Lett. 101 204301Google Scholar

    [15]

    Mei J, Ma G, Yang M, Yang Z, Wen W, Sheng P 2012 Nat. Commun. 3 756Google Scholar

    [16]

    Cai X, Guo Q, Hu G, Yang J 2014 Appl. Phys. Lett. 105 121901Google Scholar

    [17]

    Starkey T A, Smith J D, Hibbins A P, Sambles J R, Rance H J 2017 Appl. Phys. Lett. 110 041902Google Scholar

    [18]

    Li Y, Assouar B M 2016 Appl. Phys. Lett. 108 063502Google Scholar

    [19]

    Richoux O, Achilleos V, Theocharis G, Brouzos I 2018 Sci. Rep. 8 12328Google Scholar

    [20]

    Badreddine Assouar M, Senesi M, Oudich M, Ruzzene M, Hou Z 2012 Appl. Phys. Lett. 101 173505Google Scholar

    [21]

    Climente A, Torrent D, Anchez-Dehesa J S 2012 Appl. Phys. Lett. 100 144103Google Scholar

    [22]

    Romero-García V, Theocharis G, Richoux O, Merkel A, Tournat V, Pagneux V 2016 Sci. Rep. 6 19519Google Scholar

    [23]

    Li J, Wang W, Xie Y, Popa B I, Cummer S A 2016 Appl. Phys. Lett. 109 091908Google Scholar

    [24]

    Li Y, Shen C, Xie Y, Li J, Wang W, Cummer S, Jing Y 2017 Phys. Rev. Lett. 119 035501Google Scholar

    [25]

    Wang X, Luo X, Zhao H, Huang Z 2018 Appl. Phys. Lett. 112 021901Google Scholar

    [26]

    Peng X, Ji J, Jing Y 2018 J. Acoust. Soc. Am. 144 EL255Google Scholar

    [27]

    Xia J P, Zhang X T, Sun H X, Yuan S Q, Qian J, Ge Y 2018 Phys. Rev. Appl. 10 014016Google Scholar

    [28]

    Chen Z, Xue C, Fan L, Zhang S Y, Li X J, Zhang H, Ding J 2016 Sci. Rep. 6 30254Google Scholar

    [29]

    Ma G, Fan X, Sheng P, Fink M 2018 Proc. Natl. Acad. Sci. USA 115 6638Google Scholar

    [30]

    Wang Y, Zhao H, Yang H, Zhong J, Zhao D, Lu Z, Wen J 2018 J. Appl. Phys. 123 185109Google Scholar

    [31]

    Ding C L, Hao L M, Zhao X P 2010 J. Appl. Phys. 108 074911Google Scholar

    [32]

    Chen H J, Zeng H C, Ding C L, Luo C R, Zhao X P 2013 J. Appl. Phys. 113 104902Google Scholar

    [33]

    Yang M, Sheng P 2017 Annu. Rev. Mater. Res. 47 83Google Scholar

  • 图 1  可调声学超材料的模型设计 (a), (b)二维SHS的结构示意图和等效电路图; (c), (d)二维HT的结构示意图和等效电路图; (e), (f)SHS和HT耦合后的结构示意图和等效电路图; (g)进一步变形优化得到的可调声学超材料模型的结构示意图

    Figure 1.  Model design of the acoustic metamaterial: (a), (b) Schematic diagram and equivalent circuit diagram of the two-dimensional SHS; (c), (d) schematic diagram and equivalent circuit diagram of the two-dimensional HT; (e), (f) schematic diagram and equivalent circuit diagram of the coupled structure of SHS and HT; (g) schematic diagram of the tunable acoustic metamaterial obtained by the deformation and optimization of the coupled structure.

    图 2  仿真得到的可调声学超材料的吸收性能对比 (a)不同内腔旋转角度下的吸收系数随频率的变化; (b)不同内腔旋转角度下的相对阻抗实部与虚部随频率的变化; (c)理论和仿真得到的共振频率随内腔旋转角度的变化关系

    Figure 2.  Simulated comparison of the absorption performance of tunable acoustic metamaterial: (a) Absorption coefficient for different rotation angles of the inner split ring as a function of frequency; (b) real parts and imaginary parts of the relative impedance for different rotation angles of the inner split ring as a function of frequency; (c) comparison of the theoretical and simulated resonant frequency as a function of rotation angle.

    图 3  不同频率下的声能量和空气介质局域速度分布图对比 (a), (b) 500 Hz处的声能量和空气局域速度图; (c), (d) 1000 Hz处的声能量和空气局域速度图; (e), (f) 1600 Hz处的声能量和空气局域速度图

    Figure 3.  Comparison of the sound energy and local speed distributions at different frequencies: (a), (b) Sound energy and local speed fields at 500 Hz; (c), (d) sound energy and local speed fields at 1000 Hz; (e), (f) sound energy and local speed fields at 1600 Hz.

    图 4  3D打印制备的样品实物图 (a)组装成整体的样品; (b)外层开口腔体; (c)顶部密封端; (d)内层可旋转开口腔体; (e)底部密封端

    Figure 4.  Photographs of sample prepared by 3D printing technology: (a) Assembled whole sample; (b) outer split cavity; (c) top seal; (d) inner split ring; (e) bottom seal.

    图 5  实验测试得到的样品在不同内腔旋转角度(分别为0°, 90°和180°)下的吸收系数随频率的变化

    Figure 5.  Experimental absorption coefficient of the sample at different rotation angles (i.e. 0°, 90°and 180°, respectively) of the inner split ring as a function of frequency.

  • [1]

    Rahimabady M, Statharas E C, Yao K, Mirshekarloo M S, Chen S, Tay F E H 2017 Appl. Phys. Lett. 111 241601Google Scholar

    [2]

    Gwon J G, Kim S K, Kim J H 2016 Mater. Des. 89 448Google Scholar

    [3]

    Xue B, Li R, Deng J, Zhang J 2016 Ind. Eng. Chem. Res. 55 3982Google Scholar

    [4]

    Padhye R, Nayak R 2016 Acoustic Textiles (Singapore: Springer)

    [5]

    丁昌林, 董怡宝, 赵晓鹏 2018 物理学报 67 194301Google Scholar

    Ding C L, Dong Y B, Zhao X P 2018 Acta Phys. Sin. 67 194301Google Scholar

    [6]

    Liu Z Y, Zhang X X, Mao Y W, Zhu Y Y, Yang Z Y, Chan C T, Sheng P 2000 Science 289 1734Google Scholar

    [7]

    Fang N, Xi D J, Xu J Y, Ambati M, Srituravanich W, Sun C, Zhang X 2006 Nat. Mater. 5 452Google Scholar

    [8]

    Lee S H, Park C M, Seo Y M, Wang Z G, Kim C K 2010 Phys. Rev. Lett. 104 054301Google Scholar

    [9]

    Li Y, Liang B, Zou X Y, Cheng J C 2013 Appl. Phys. Lett. 103 063509Google Scholar

    [10]

    Zhai S L, Zhao X P, Liu S, Shen F L, Li L L, Luo C R 2016 Sci. Rep. 6 32388Google Scholar

    [11]

    Zhai S L, Chen H J, Ding C L, Li L L, Shen F L, Luo C R, Zhao X P 2016 J. Phys. D: Appl. Phys. 49 225302Google Scholar

    [12]

    Ma G C, Fan X Y, Ma F Y, de Rosny J, Sheng P, Fink M 2018 Nat. Phys. 14 608Google Scholar

    [13]

    Xu Y, Li Y, Lee R K, Yariv A 2000 Phys. Rev. E 62 7389Google Scholar

    [14]

    Yang Z, Mei J, Yang M, Chan N H, Sheng P 2008 Phys. Rev. Lett. 101 204301Google Scholar

    [15]

    Mei J, Ma G, Yang M, Yang Z, Wen W, Sheng P 2012 Nat. Commun. 3 756Google Scholar

    [16]

    Cai X, Guo Q, Hu G, Yang J 2014 Appl. Phys. Lett. 105 121901Google Scholar

    [17]

    Starkey T A, Smith J D, Hibbins A P, Sambles J R, Rance H J 2017 Appl. Phys. Lett. 110 041902Google Scholar

    [18]

    Li Y, Assouar B M 2016 Appl. Phys. Lett. 108 063502Google Scholar

    [19]

    Richoux O, Achilleos V, Theocharis G, Brouzos I 2018 Sci. Rep. 8 12328Google Scholar

    [20]

    Badreddine Assouar M, Senesi M, Oudich M, Ruzzene M, Hou Z 2012 Appl. Phys. Lett. 101 173505Google Scholar

    [21]

    Climente A, Torrent D, Anchez-Dehesa J S 2012 Appl. Phys. Lett. 100 144103Google Scholar

    [22]

    Romero-García V, Theocharis G, Richoux O, Merkel A, Tournat V, Pagneux V 2016 Sci. Rep. 6 19519Google Scholar

    [23]

    Li J, Wang W, Xie Y, Popa B I, Cummer S A 2016 Appl. Phys. Lett. 109 091908Google Scholar

    [24]

    Li Y, Shen C, Xie Y, Li J, Wang W, Cummer S, Jing Y 2017 Phys. Rev. Lett. 119 035501Google Scholar

    [25]

    Wang X, Luo X, Zhao H, Huang Z 2018 Appl. Phys. Lett. 112 021901Google Scholar

    [26]

    Peng X, Ji J, Jing Y 2018 J. Acoust. Soc. Am. 144 EL255Google Scholar

    [27]

    Xia J P, Zhang X T, Sun H X, Yuan S Q, Qian J, Ge Y 2018 Phys. Rev. Appl. 10 014016Google Scholar

    [28]

    Chen Z, Xue C, Fan L, Zhang S Y, Li X J, Zhang H, Ding J 2016 Sci. Rep. 6 30254Google Scholar

    [29]

    Ma G, Fan X, Sheng P, Fink M 2018 Proc. Natl. Acad. Sci. USA 115 6638Google Scholar

    [30]

    Wang Y, Zhao H, Yang H, Zhong J, Zhao D, Lu Z, Wen J 2018 J. Appl. Phys. 123 185109Google Scholar

    [31]

    Ding C L, Hao L M, Zhao X P 2010 J. Appl. Phys. 108 074911Google Scholar

    [32]

    Chen H J, Zeng H C, Ding C L, Luo C R, Zhao X P 2013 J. Appl. Phys. 113 104902Google Scholar

    [33]

    Yang M, Sheng P 2017 Annu. Rev. Mater. Res. 47 83Google Scholar

  • [1] LU Wenqiang, YI Yingting, SONG Qianju, ZHOU Zigang, YI Yougen, ZENG Qingdong, YI Zao. Simulation of terahertz tunable seven-band perfect absorber based on high frequency detection function of Dirac semi-metallic nanowires. Acta Physica Sinica, 2025, 74(3): 034101. doi: 10.7498/aps.74.20241516
    [2] Jin Jia-Sheng, Ma Cheng-Ju, Zhang Yao, Zhang Yue-Bin, Bao Shi-Qian, Li Mi, Li Dong-Ming, Liu Ming, Liu Qian-Zhen, Zhang Yi-Xin. Switchable multifunctional terahertz metamaterial with slow-light and absorption functions based on phase change materials. Acta Physica Sinica, 2023, 72(8): 084202. doi: 10.7498/aps.72.20222336
    [3] Xu Qiang-Rong, Shen Cheng, Han Feng, Lu Tian-Jian. Broadband low-frequency sound insulation performance of quasi-zero stiffness local resonant acoustic metamaterial plate. Acta Physica Sinica, 2021, 70(24): 244302. doi: 10.7498/aps.70.20211203
    [4] Jiang Xiao-Wei, Wu Hua. Metamaterial absorber with controllable absorption wavelength and absorption efficiency. Acta Physica Sinica, 2021, 70(2): 027804. doi: 10.7498/aps.70.20201173
    [5] Liu Shao-Gang, Zhao Yue-Chao, Zhao Dan. Bandgap and transmission spectrum characteristics of multilayered acoustic metamaterials with magnetorheological elastomer. Acta Physica Sinica, 2019, 68(23): 234301. doi: 10.7498/aps.68.20191334
    [6] Ding Chang-Lin, Dong Yi-Bao, Zhao Xiao-Peng. Research advances in acoustic metamaterials and metasurface. Acta Physica Sinica, 2018, 67(19): 194301. doi: 10.7498/aps.67.20180963
    [7] Liu Song, Luo Chun-Rong, Zhai Shi-Long, Chen Huai-Jun, Zhao Xiao-Peng. Inverse Doppler effect of acoustic metamaterial with negative mass density. Acta Physica Sinica, 2017, 66(2): 024301. doi: 10.7498/aps.66.024301
    [8] Zhang Yong-Yan, Wu Jiu-Hui, Zhong Hong-Min. Low-frequency wide-band mechanism of a new type acoustic metamaterial with negative modulus. Acta Physica Sinica, 2017, 66(9): 094301. doi: 10.7498/aps.66.094301
    [9] Zhang Yin, Feng Yi-Jun, Jiang Tian, Cao Jie, Zhao Jun-Ming, Zhu Bo. Graphene based tunable metasurface for terahertz scattering manipulation. Acta Physica Sinica, 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [10] Wang Fei, Huang Yi-Wang, Sun Qi-Hang. Effect of gas bubble volume fraction on low-frequency acoustic characteristic of sandy sediment. Acta Physica Sinica, 2017, 66(19): 194302. doi: 10.7498/aps.66.194302
    [11] Xue Jia, Qin Ji-Liang, Zhang Yu-Chi, Li Gang, Zhang Peng-Fei, Zhang Tian-Cai, Peng Kun-Chi. Measurement of standard vacuum noise at low frequencies. Acta Physica Sinica, 2016, 65(4): 044211. doi: 10.7498/aps.65.044211
    [12] Liu Jiao, Hou Zhi-Lin, Fu Xiu-Jun. Mechanism for local resonant acoustic metamaterial. Acta Physica Sinica, 2015, 64(15): 154302. doi: 10.7498/aps.64.154302
    [13] Ma Yan-Bing, Zhang Huai-Wu, Li Yuan-Xun. Study on a novel dual-band metamaterial absorber by using fractal Koch curves. Acta Physica Sinica, 2014, 63(11): 118102. doi: 10.7498/aps.63.118102
    [14] Wang Ying, Cheng Yong-Zhi, Nie Yan, Gong Rong-Zhou. Design and experiments of low-frequency broadband metamaterial absorber based on lumped elements. Acta Physica Sinica, 2013, 62(7): 074101. doi: 10.7498/aps.62.074101
    [15] Liu Ya-Hong, Fang Shi-Lei, Gu Shuai, Zhao Xiao-Peng. Multiband and broadband metamterial absorbers. Acta Physica Sinica, 2013, 62(13): 134102. doi: 10.7498/aps.62.134102
    [16] Shen Hui-Jie, Wen Ji-Hong, Yu Dian-Long, Cai Li, Wen Xi-Sen. Research on a cylindrical cloak with active acoustic metamaterial layers. Acta Physica Sinica, 2012, 61(13): 134303. doi: 10.7498/aps.61.134303
    [17] Su Bin, Gong Bo-Yi, Zhao Xiao-Peng. Numerical simulation of leaf-shaped metamaterial absorber at infrared frequency. Acta Physica Sinica, 2012, 61(14): 144203. doi: 10.7498/aps.61.144203
    [18] Shen Xiao-Peng, Cui Tie-Jun, Ye Jian-Xiang. Dual band metamaterial absorber in microwave regime. Acta Physica Sinica, 2012, 61(5): 058101. doi: 10.7498/aps.61.058101
    [19] Ding Chang-Lin, Zhao Xiao-Peng, Hao Li-Mei, Zhu Wei-Ren. Acoustic metamaterial with split hollow spheres. Acta Physica Sinica, 2011, 60(4): 044301. doi: 10.7498/aps.60.044301
    [20] Fan Jing, Cai Guang-Yu. Broadband lefthanded metamaterial absorber based on split ring resonator and wire array. Acta Physica Sinica, 2010, 59(9): 6084-6088. doi: 10.7498/aps.59.6084
Metrics
  • Abstract views:  10990
  • PDF Downloads:  380
  • Cited By: 0
Publishing process
  • Received Date:  26 October 2018
  • Accepted Date:  02 December 2018
  • Available Online:  01 February 2019
  • Published Online:  05 February 2019

/

返回文章
返回