Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Inverse Doppler effect of acoustic metamaterial with negative mass density

Liu Song Luo Chun-Rong Zhai Shi-Long Chen Huai-Jun Zhao Xiao-Peng

Citation:

Inverse Doppler effect of acoustic metamaterial with negative mass density

Liu Song, Luo Chun-Rong, Zhai Shi-Long, Chen Huai-Jun, Zhao Xiao-Peng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • It is always an issue for researchers to control the propagation of sound wave at will. A kind of acoustic metamaterial built with artificial microunits attracts the attention of researchers, because it possesses many unique properties that cannot be realized by natural materials, such as negative refractive index, slab focusing, and cloak. The Doppler effect leads to the frequency change of a wave because of the relative motion between the observer and the source. In 1968, Veselago[Veselago V G 1968 Soviet Physics Uspekhi 10 509] theoretically proposed that a metamaterial with a negative refraction can result in an inverse Doppler effect. The investigation of inverse Doppler effect has been developed with the improvement of metamaterials. However, the design methods of these metamaterials generally need ideal material parameters, which are difficult to obtain experimentally. Besides, although the inverse Doppler effects are realized by some electromagnetic metamaterials in optical and microwave frequencies, the relevant researches in acoustic metamaterials make slow progress. In this work, a 2D acoustic metamaterial with negative mass density is fabricated. Our previous work has demonstrated that the air in the internal cavity of the unit cell will vibrate back and forth to generate the vibration velocity when the air is driven by a sound source. As the source frequency reaches the resonant frequency, large amounts of energy will be stored in the internal cavity. This accumulation of energy will cause the acceleration of the air in opposite direction to the sound pressure, thus this metamaterial will exhibit negative mass density. In this case, the direction of the phase velocity is exactly opposite to that of the group velocity of the sound wave. Therefore, the inverse Doppler effect of sound wave can be realized by this metamaterial. Since the unit cells with different lengths have different resonant frequencies and there is only weak interaction among the adjacent unit cells, the frequency band of the metamaterial with negative mass density can be broaden by combining several different unit cells. Our previous experiments have demonstrated that the mass density and refractive index of this metamaterial are negative over a broad frequency range from 1560 Hz to 5580 Hz and 1500 Hz to 5480 Hz, respectively. A testing equipment is constructed to measure the Doppler effect of this metamaterial from 1200 Hz to 6500 Hz. The experimental results show that when the sound source witha frequency of 2000 Hz approaches to the detector, the detected frequency is 1999.27 Hz, which is 0.73 Hz smaller than the source frequency; when the sound source recedes from the detector, the detected frequency is 2000.68 Hz, which is 0.68 Hz larger than the source frequency. Therefore, the inverse Doppler effect appears at 2000 Hz. The experimental results within the whole frequency range of negative refractive index show broadband inverse Doppler phenomena.
      Corresponding author: Zhao Xiao-Peng, xpzhao@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674267, 51272215) and the National Basic Research Program of China (Grant No. 2012CB921503).
    [1]

    Pendry J B, Holden A J, Stewart W J, Youngs I 1996 Phys. Rev. Lett. 76 4773

    [2]

    Pendry J B, Holden A J, Robbins D J, Stewart W J 1999 IEEE Trans. Microwave Theory Tech. 47 10

    [3]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [4]

    Smith D R, Pendry J B, Wiltshire M C K 2004 Science 305 788

    [5]

    Bongard F, Lissek H, Mosig J R 2010 Phys. Rev. B 82 094306

    [6]

    Zhang S, Park Y S, Li J S, Lu X C, Zhang W L, Zhang X 2009 Phys. Rev. Lett. 102 023901

    [7]

    Zhu W R, Zhao X P, Guo J Q 2008 Appl. Phys. Lett. 92 3

    [8]

    Valentine J, Zhang S, Zentgraf T, Ulin-Avila E, Genov D A, Bartal G, Zhang X 2008 Nature 455 376

    [9]

    Zhang X, Liu Z W 2008 Nat. Mater. 7 435

    [10]

    Liu Z W, Lee H, Xiong Y 2007 Science 315 1686

    [11]

    Chen H S, Chen M 2010 Mater. Today 14 34

    [12]

    Chen H J, Zhai S L, Ding C L, Liu S, Luo C R, Zhao X P 2014 J. Appl. Phys. 115 054905

    [13]

    Zhai S L, Chen H J, Ding C L, Zhao X P 2013 J. Phys. D:Appl. Phys. 46 475105

    [14]

    Chen H J, Zeng H C, Ding C L, Luo C R, Zhao X P 2013 J. Appl. Phys. 113 104902

    [15]

    Ding C L, Zhao X P, Hao L M, Zhu W R 2011 Acta Phys. Sin. 60 044301 (in Chinese)[丁昌林, 赵晓鹏, 郝丽梅, 朱卫仁2011物理学报60 044301]

    [16]

    Ding C L, Hao L M, Zhao X P 2010 J. Appl. Phys. 108 074911

    [17]

    Zeng H C, Luo C R, Chen H J, Zhai S L, Ding C L, Zhao X P 2013 Solid State Commun. 173 14

    [18]

    Cheng Y, Zhou C, Yuan B G, Wu D J, Wei Q, Liu X J 2015 Nat. Mater. 14 1013

    [19]

    Cheng Y, Xu J Y, Liu X J 2008 Phys. Rev. B 77 045134

    [20]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780

    [21]

    Zhu J, Christensen J, Jung J, Martin-Moreno L, Yin X, Fok L, Zhang X, Garcia-Vidal F J 2011 Nat. Phys. 7 52

    [22]

    Veselago V G 1968 Soviet Physics Uspekhi 10 509

    [23]

    Chen J B, Wang Y, Jia B H 2011 Nat. Photonics 5 239

    [24]

    Seddon N, Bearpark T 2003 Science 302 1537

    [25]

    Zhai S L, Zhao X P, Liu S, Shen F L, Li L L, Luo C R 2016 Sci. Rep. 6 32388

    [26]

    Lee S H, Park C M, Seo Y M, Kim C K 2010 Phys. Rev. B 81 241102

  • [1]

    Pendry J B, Holden A J, Stewart W J, Youngs I 1996 Phys. Rev. Lett. 76 4773

    [2]

    Pendry J B, Holden A J, Robbins D J, Stewart W J 1999 IEEE Trans. Microwave Theory Tech. 47 10

    [3]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [4]

    Smith D R, Pendry J B, Wiltshire M C K 2004 Science 305 788

    [5]

    Bongard F, Lissek H, Mosig J R 2010 Phys. Rev. B 82 094306

    [6]

    Zhang S, Park Y S, Li J S, Lu X C, Zhang W L, Zhang X 2009 Phys. Rev. Lett. 102 023901

    [7]

    Zhu W R, Zhao X P, Guo J Q 2008 Appl. Phys. Lett. 92 3

    [8]

    Valentine J, Zhang S, Zentgraf T, Ulin-Avila E, Genov D A, Bartal G, Zhang X 2008 Nature 455 376

    [9]

    Zhang X, Liu Z W 2008 Nat. Mater. 7 435

    [10]

    Liu Z W, Lee H, Xiong Y 2007 Science 315 1686

    [11]

    Chen H S, Chen M 2010 Mater. Today 14 34

    [12]

    Chen H J, Zhai S L, Ding C L, Liu S, Luo C R, Zhao X P 2014 J. Appl. Phys. 115 054905

    [13]

    Zhai S L, Chen H J, Ding C L, Zhao X P 2013 J. Phys. D:Appl. Phys. 46 475105

    [14]

    Chen H J, Zeng H C, Ding C L, Luo C R, Zhao X P 2013 J. Appl. Phys. 113 104902

    [15]

    Ding C L, Zhao X P, Hao L M, Zhu W R 2011 Acta Phys. Sin. 60 044301 (in Chinese)[丁昌林, 赵晓鹏, 郝丽梅, 朱卫仁2011物理学报60 044301]

    [16]

    Ding C L, Hao L M, Zhao X P 2010 J. Appl. Phys. 108 074911

    [17]

    Zeng H C, Luo C R, Chen H J, Zhai S L, Ding C L, Zhao X P 2013 Solid State Commun. 173 14

    [18]

    Cheng Y, Zhou C, Yuan B G, Wu D J, Wei Q, Liu X J 2015 Nat. Mater. 14 1013

    [19]

    Cheng Y, Xu J Y, Liu X J 2008 Phys. Rev. B 77 045134

    [20]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780

    [21]

    Zhu J, Christensen J, Jung J, Martin-Moreno L, Yin X, Fok L, Zhang X, Garcia-Vidal F J 2011 Nat. Phys. 7 52

    [22]

    Veselago V G 1968 Soviet Physics Uspekhi 10 509

    [23]

    Chen J B, Wang Y, Jia B H 2011 Nat. Photonics 5 239

    [24]

    Seddon N, Bearpark T 2003 Science 302 1537

    [25]

    Zhai S L, Zhao X P, Liu S, Shen F L, Li L L, Luo C R 2016 Sci. Rep. 6 32388

    [26]

    Lee S H, Park C M, Seo Y M, Kim C K 2010 Phys. Rev. B 81 241102

  • [1] Xu Qiang-Rong, Zhu Yang, Lin Kang, Shen Cheng, Lu Tian-Jian. Low-frequency sound insulation performance of novel membrane acoustic metamaterial with dynamic negative stiffness. Acta Physica Sinica, 2022, 71(21): 214301. doi: 10.7498/aps.71.20221058
    [2] Xu Qiang-Rong, Shen Cheng, Han Feng, Lu Tian-Jian. Broadband low-frequency sound insulation performance of quasi-zero stiffness local resonant acoustic metamaterial plate. Acta Physica Sinica, 2021, 70(24): 244302. doi: 10.7498/aps.70.20211203
    [3] Shen Hui-Jie, Yu Dian-Long, Tang Zhi-Yin, Su Yong-Sheng, Li Yan-Fei, Liu Jiang-Wei. Characteristics of low-frequency noise elimination in a fluid-filled pipe of dark acoustic metamaterial type. Acta Physica Sinica, 2019, 68(14): 144301. doi: 10.7498/aps.68.20190311
    [4] Tian Yuan, Ge Hao, Lu Ming-Hui, Chen Yan-Feng. Research advances in acoustic metamaterials. Acta Physica Sinica, 2019, 68(19): 194301. doi: 10.7498/aps.68.20190850
    [5] He Zi-Hou, Zhao Jing-Bo, Yao Hong, Jiang Juan-Na, Chen Xin. Sound insulation performance of thin-film acoustic metamaterials based on piezoelectric materials. Acta Physica Sinica, 2019, 68(13): 134302. doi: 10.7498/aps.68.20190245
    [6] He Zi-Hou, Zhao Jing-Bo, Yao Hong, Chen Xin. Sound insulation performance of Helmholtz cavity with thin film bottom. Acta Physica Sinica, 2019, 68(21): 214302. doi: 10.7498/aps.68.20191131
    [7] Liu Shao-Gang, Zhao Yue-Chao, Zhao Dan. Bandgap and transmission spectrum characteristics of multilayered acoustic metamaterials with magnetorheological elastomer. Acta Physica Sinica, 2019, 68(23): 234301. doi: 10.7498/aps.68.20191334
    [8] Zhai Shi-Long, Wang Yuan-Bo, Zhao Xiao-Peng. A kind of tunable acoustic metamaterial for low frequency absorption. Acta Physica Sinica, 2019, 68(3): 034301. doi: 10.7498/aps.68.20181908
    [9] Zhang Feng-Hui,  Tang Yu-Fan,  Xin Feng-Xian,  Lu Tian-Jian. Micro-perforated acoustic metamaterial with honeycomb-corrugation hybrid core for broadband low frequency sound absorption. Acta Physica Sinica, 2018, 67(23): 234302. doi: 10.7498/aps.67.20181368
    [10] Ding Chang-Lin, Dong Yi-Bao, Zhao Xiao-Peng. Research advances in acoustic metamaterials and metasurface. Acta Physica Sinica, 2018, 67(19): 194301. doi: 10.7498/aps.67.20180963
    [11] Zheng Sheng-Jie, Xia Bai-Zhan, Liu Ting-Ting, Yu De-Jie. Subwavelength topological valley-spin states in the space-coiling acoustic metamaterials. Acta Physica Sinica, 2017, 66(22): 228101. doi: 10.7498/aps.66.228101
    [12] Zhang Yong-Yan, Wu Jiu-Hui, Zhong Hong-Min. Low-frequency wide-band mechanism of a new type acoustic metamaterial with negative modulus. Acta Physica Sinica, 2017, 66(9): 094301. doi: 10.7498/aps.66.094301
    [13] Lu Zhi-Miao, Cai Li, Wen Ji-Hong, Wen Xi-Sen. Research on coordinate transformation design of a cylinderical acoustic cloak with pentamode materials. Acta Physica Sinica, 2016, 65(17): 174301. doi: 10.7498/aps.65.174301
    [14] Liu Jiao, Hou Zhi-Lin, Fu Xiu-Jun. Mechanism for local resonant acoustic metamaterial. Acta Physica Sinica, 2015, 64(15): 154302. doi: 10.7498/aps.64.154302
    [15] Su Yan-Yan, Gong Bo-Yi, Zhao Xiao-Peng. Zero-index metamaterial based on double-negative structure. Acta Physica Sinica, 2012, 61(8): 084102. doi: 10.7498/aps.61.084102
    [16] Shen Hui-Jie, Wen Ji-Hong, Yu Dian-Long, Cai Li, Wen Xi-Sen. Research on a cylindrical cloak with active acoustic metamaterial layers. Acta Physica Sinica, 2012, 61(13): 134303. doi: 10.7498/aps.61.134303
    [17] Ding Chang-Lin, Zhao Xiao-Peng, Hao Li-Mei, Zhu Wei-Ren. Acoustic metamaterial with split hollow spheres. Acta Physica Sinica, 2011, 60(4): 044301. doi: 10.7498/aps.60.044301
    [18] Tang Shi-Wei, Zhu Wei-Ren, Zhao Xiao-Peng. Multiband negative index metamaterials at optical frequencies. Acta Physica Sinica, 2009, 58(5): 3220-3223. doi: 10.7498/aps.58.3220
    [19] Ding Chang-Lin, Zhao Xiao-Peng. Audible sound metamaterial. Acta Physica Sinica, 2009, 58(9): 6351-6355. doi: 10.7498/aps.58.6351
    [20] LO LIAU-FU, LU TAN, YANG KUO-SHEN. ON THE ANOMALOUS INTERACTION, LEPTON STRUCTURE, AND μ-e MASS-DIFFERENCE. Acta Physica Sinica, 1966, 22(3): 334-340. doi: 10.7498/aps.22.334
Metrics
  • Abstract views:  10089
  • PDF Downloads:  521
  • Cited By: 0
Publishing process
  • Received Date:  30 August 2016
  • Accepted Date:  14 October 2016
  • Published Online:  20 January 2017

/

返回文章
返回