Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research advances in acoustic metamaterials

Tian Yuan Ge Hao Lu Ming-Hui Chen Yan-Feng

Citation:

Research advances in acoustic metamaterials

Tian Yuan, Ge Hao, Lu Ming-Hui, Chen Yan-Feng
PDF
HTML
Get Citation
  • Acoustic metamaterials have opened up unprecedented possibilities for wave manipulation, and can be utilized to realize many novel and fascinating physical phenomena, such as acoustic self-collimation, cloaking, asymmetric transmission, and negative refraction. In this review, we explore the fundamental physics of acoustic metamaterials and introduce several exciting developments, including the realization of unconventional effective parameters, acoustic metasurface, total sound absorption, high-resolution imaging, parity-time-symmetric materials, and topological acoustics. Acoustic metamatetials with negative effective parameters that are not observed in nature expand acoustic properties of natural materials. Acoustic metasurfaces can exhibit wavefront-shaping capabilities, with thickness being much smaller than the wavelength. The precisely designed matematerials provide the new possibility of steering waves on a subwavelength scale, which can be used for acoustic high-resolution imaging beyond the diffraction limit. The metamaterial absorbers can achieve total sound absorption at low frequencies and exhibit broadband absorption spectrum. Moreover, structure designs guided by the topological physics further broaden the whole field of acoustic metamaterials. Phononic crystals have become aflexible platform for studying new physics and exotic phenomenarelated to topological phases. Finally, we conclude the developments of acoustic metamaterials, discuss the technical challenges, and introduce potential applications in this emerging field.
      Corresponding author: Lu Ming-Hui, luminghui@nju.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant Nos. 2017YFA0303702, 2018YFA0306200), the National Natural Science Foundation of China (Grant Nos. 51732006, 11474158, 11804149), and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No.11625418)
    [1]

    Liu Z Y, Zhang X X, Mao Y W, Zhu Y Y, Yang Z, Chan C T, Sheng P 2000 Science 289 1734Google Scholar

    [2]

    Zheludev N I, Kivshar Y S 2012 Nat. Mater. 11 917Google Scholar

    [3]

    Cummer S A, Christensen J, Alù A 2016 Nat. Rev. Mater. 1 16001Google Scholar

    [4]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966Google Scholar

    [5]

    Kaina N, Lemoult F, Fink M, Lerosey G 2015 Nature 525 77Google Scholar

    [6]

    Yang Z Y, Mei J, Yang M, Chan N, Sheng P 2008 Phys. Rev. Lett. 101 204301Google Scholar

    [7]

    Fang N, Xi D, Xu J, Ambati M, Srituravanich W, Sun C, Zhang X 2006 Nat. Mater. 5 452Google Scholar

    [8]

    Christensen J, Martín-Moreno L, García-Vidal F J 2010 Appl. Phys. Lett. 97 134106Google Scholar

    [9]

    Li J, Chan C T 2004 Phys. Rev. E 70 055602Google Scholar

    [10]

    Lee S H, Park C M, Seo Y M, Wang Z G, Kim C K 2010 Phys. Rev. Lett. 104 054301Google Scholar

    [11]

    Brunet T, Merlin A, Mascaro B, Zimny K, Leng J, Poncelet O, Aristégui C, Mondain-Monval O 2015 Nat. Mater. 14 384

    [12]

    Liang Z X, Li J S 2012 Phys. Rev. Lett. 108 114301Google Scholar

    [13]

    Xie Y B, Popa B, Zigoneanu L, Cummer S A 2013 Phys. Rev. Lett. 110 175501Google Scholar

    [14]

    Christensen J, de Abajo F J G 2012 Phys. Rev. Lett. 108 124301Google Scholar

    [15]

    García-Chocano V M, Christensen J, Sánchez-Dehesa J 2014 Phys. Rev. Lett. 112 144301Google Scholar

    [16]

    Fleury R, Alù A 2013 Phys. Rev. Lett. 111 055501Google Scholar

    [17]

    Liberal I, Engheta N 2017 Nat. Photon. 11 149Google Scholar

    [18]

    Dubois M, Shi C Z, Zhu X F, Wang Y, Zhang X 2017 Nat. Commun. 8 14871Google Scholar

    [19]

    Assouar B, Liang B, Wu Y, Li Y, Cheng J C, Jing Y 2018 Nat. Rev. Mater. 3 460Google Scholar

    [20]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [21]

    Li Y, Liang B, Gu Z M, Zou X Y, Cheng J C 2013 Sci. Rep. 3 2546Google Scholar

    [22]

    Li Y, Jiang X, Liang B, Cheng J C, Zhang L K 2015 Phys. Rev. Appl. 4 024003Google Scholar

    [23]

    Melde K, Mark A G, Qiu T, Fischer P 2016 Nature 537 518Google Scholar

    [24]

    Xie Y, Shen C, Wang W, Li J, Suo D, Popa B I, Jing Y, Cummer S A 2016 Sci. Rep. 6 35437Google Scholar

    [25]

    Zhu Y, Hu J, Fan X, Yang J, Liang B, Zhu X, Cheng J 2018 Nat. Commun. 9 1632Google Scholar

    [26]

    Shi C Z, Dubois M, Wang Y, Zhang X 2017 Proc. Natl. Acad. Sci. USA 114 7250Google Scholar

    [27]

    Jiang X, Liang B, Cheng J C, Qiu C W 2018 Adv. Mater. 30 1800257Google Scholar

    [28]

    Jiang X, Li Y, Liang B, Cheng J C, Zhang L K 2016 Phys. Rev. Lett. 117 034301Google Scholar

    [29]

    Ma G C, Fan X Y, Sheng P, Fink M 2018 Proc. Natl. Acad. Sci. USA 115 6638Google Scholar

    [30]

    Li Y, Assouar B M 2016 Appl. Phys. Lett. 108 063502

    [31]

    Shen C, Cummer S A 2018 Phys. Rev. Appl. 9 054009Google Scholar

    [32]

    Jiménez N, Huang W, Romero-García V, Pagneux V, Groby J P 2016 Appl. Phys. Lett. 109 121902Google Scholar

    [33]

    Chen J, Xiao J, Lisevych D, Shakouri A, Fan Z 2018 Nat. Commun. 9 4920Google Scholar

    [34]

    Ma F Y, Huang M, Xu Y C, Wu J H 2018 Sci. Rep. 8 5906Google Scholar

    [35]

    Li J F, Shen C, Díaz-Rubio A, Tretyakov S A, Cummer S A 2018 Nat.Commun. 9 1342Google Scholar

    [36]

    Quan L, Ra’di Y, Sounas D L, Alù A 2018 Phys. Rev. Lett. 120 254301Google Scholar

    [37]

    Lu M H, Feng L, Chen Y F 2009 Mater. Today 12 34

    [38]

    Ge H, Yang M, Ma C, Lu M H, Chen Y F, Fang N, Sheng P 2018 Natl. Sci. Rev. 5 159Google Scholar

    [39]

    Yang M, Sheng P 2017 Annu. Rev. Mater. Res. 47 83Google Scholar

    [40]

    Yang M, Meng C, Fu C X, Li Y, Yang Z Y, Sheng P 2015 Appl. Phys. Lett. 107 104104Google Scholar

    [41]

    Ma G C, Yang M, Xiao S W, Yang Z Y, Sheng P 2014 Nat. Mater. 13 873Google Scholar

    [42]

    Jiménez N, Romero-García V, Pagneux V, Groby J P 2017 Phys. Rev. B 95 014205Google Scholar

    [43]

    Jiang X, Liang B, Li R Q, Zou X Y, Yin L L, Cheng J C 2014 Appl. Phys. Lett. 105 243505

    [44]

    Yang M, Chen S Y, Fu C X, Sheng P 2017 Mater. Horiz. 4 673Google Scholar

    [45]

    Ma G C, Sheng P 2016 Sci. Adv. 2 e1501595Google Scholar

    [46]

    Lemoult F, Fink M, Lerosey G 2011 Phys. Rev. Lett. 107 064301Google Scholar

    [47]

    Lemoult F, Kaina N, Fink M, Lerosey G 2013 Nat. Phys. 9 55

    [48]

    Park J J, Park C M, Lee K J B, Lee S H 2015 Appl. Phys. Lett. 106 051901Google Scholar

    [49]

    Ambati M, Fang N, Sun C, Zhang X 2007 Phys. Rev. B 75 195447Google Scholar

    [50]

    Park C M, Park J J, Lee S H, Seo Y M, Kim C K, Lee S H 2011 Phys. Rev. Lett. 107 194301Google Scholar

    [51]

    Zhu J, Christensen J, Jung J, Martin-Moreno L, Yin X, Fok L, Zhang X, Garcia-Vidal F J 2011 Nat. Phys. 7 52

    [52]

    Li J, Fok L, Yin X, Bartal G, Zhang X 2009 Nat. Mater. 8 931Google Scholar

    [53]

    Ma G C, Fan X Y, Ma F Y, de Rosny J, Sheng P, Fink M 2018 Nat. Phys. 14 608Google Scholar

    [54]

    Lanoy M, Pierrat R, Lemoult F, Fink M, Leroy V, Tourin A 2015 Phys. Rev. B 91 224202Google Scholar

    [55]

    Lemoult F, Fink M, Lerosey G 2011 Waves in Random and Complex Media 21 614

    [56]

    Bender C M, Boettcher S 1998 Phys. Rev. Lett. 80 5243Google Scholar

    [57]

    Chong Y D, Ge L, Stone A D 2011 Phys. Rev. Lett. 106 093902Google Scholar

    [58]

    Feng L, Xu Y L, Fegadolli W S, Lu M H, Oliveira J E B, Almeida V R, Chen Y F, Scherer A 2013 Nat. Mater. 12 108

    [59]

    Chang L, Jiang X S, Hua S Y, Yang C, Wen J M, Jiang L, Li G, Wang G Z, Xiao M 2014 Nat. Photon. 8 524Google Scholar

    [60]

    Feng L, Wong Z J, Ma R M, Wang Y, Zhang X 2014 Science 346 972Google Scholar

    [61]

    Zhu X F, Ramezani H, Shi C Z, Zhu J, Zhang X 2014 Phys. Rev. X 4 031042

    [62]

    Shi C Z, Dubois M, Chen Y, Cheng L, Ramezani H, Wang Y, Zhang X 2016 Nat. Commun. 7 11110Google Scholar

    [63]

    Fleury R, Sounas D L, Alù A 2016 IEEE J. Sel. Top. Quant. 22 121Google Scholar

    [64]

    Aurégan Y, Pagneux V 2017 Phys. Rev. Lett. 118 174301Google Scholar

    [65]

    Christensen J, Willatzen M, Velasco V R, Lu M H 2016 Phys. Rev. Lett. 116 207601Google Scholar

    [66]

    Lu M H, Zhang C, Feng L, Zhao J, Chen Y F, Mao Y W, Zi J, Zhu Y Y, Zhu S N, Ming N B 2007 Nat. Mater. 6 744Google Scholar

    [67]

    Lu M H, Liu X K, Feng L, Li J, Huang C P, Chen Y F, Zhu Y Y, Zhu S N, Ming N B 2007 Phys. Rev. Lett. 99 174301Google Scholar

    [68]

    Haldane F D M, Raghu S 2008 Phys. Rev. Lett. 100 013904Google Scholar

    [69]

    Wang Z, Chong Y, Joannopoulos J D, Soljačić M 2009 Nature 461 772Google Scholar

    [70]

    Fleury R, Sounas D L, Sieck C F, Haberman M R, Alù A 2014 Science 343 516Google Scholar

    [71]

    Ni X, He C, Sun X C, Liu X P, Lu M H, Feng L, Chen Y F 2015 New J. Phys. 17 053016Google Scholar

    [72]

    Ding Y J, Peng Y G, Zhu Y F, Fan X D, Yang J, Liang B, Zhu X F, Wan X G, Cheng J C 2019 Phys. Rev. Lett. 122 014302Google Scholar

    [73]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802Google Scholar

    [74]

    König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766Google Scholar

    [75]

    He C, Ni X, Ge H, Sun X C, Chen Y B, Lu M H, Liu X P, Chen Y F 2016 Nat. Phys. 12 1124Google Scholar

    [76]

    Yu S Y, He C, Wang Z, Liu F K, Sun X C, Li Z, Lu H Z, Lu M H, Liu X P, Chen Y F 2018 Nat. Commun. 9 3072Google Scholar

    [77]

    Lu J Y, Qiu C Y, Ye L P, Fan X Y, Ke M Z, Zhang F, Liu Z Y 2017 Nat. Phys. 13 369

    [78]

    Wang Z, Yu S Y, Liu F K, Tian Y, Gupta S K, Lu M H, Chen Y F 2018 Appl. Phys. Express 11 107301Google Scholar

    [79]

    Wang Z, Liu F K, Yu S Y, Yan S L, Lu M H, Jing Y, Chen Y F 2019 J. Appl. Phys. 125 044502Google Scholar

    [80]

    He C, Yu S Y, Ge H, Wang H Q, Tian Y, Zhang H J, Sun X C, Chen Y B, Zhou J, Lu M H, Chen Y F 2018 Nat. Commun. 9 4555Google Scholar

    [81]

    Popa B I, Zigoneanu L, Cummer S A 2011 Phys. Rev. Lett. 106 253901Google Scholar

    [82]

    Zigoneanu L, Popa B I, Cummer S A 2014 Nat. Mater. 13 352Google Scholar

    [83]

    Li X F, Ni X, Feng L, Lu M H, He C, Chen Y F 2011 Phys. Rev. Lett. 106 084301Google Scholar

    [84]

    Valentine J, Zhang S, Zentgraf T, Ulin-Avila E, Genov D A, Bartal G, Zhang X 2008 Nature 455 376Google Scholar

    [85]

    Xiao S, Drachev V P, Kildishev A V, Ni X, Chettiar U K, Yuan H-K, Shalaev V M 2010 Nature 466 735Google Scholar

    [86]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977Google Scholar

    [87]

    Watts C M, Liu X, Padilla W J 2012 Adv. Mater. 24 OP98

    [88]

    Berger J B, Wadley H N G, McMeeking R M 2017 Nature 543 533Google Scholar

    [89]

    Frenzel T, Kadic M, Wegener M 2017 Science 358 1072Google Scholar

    [90]

    Han T C, Bai X, Liu D, Gao D L, Li B, Thong J T L, Qiu C W 2015 Sci. Rep. 5 10242Google Scholar

    [91]

    Han T C, Bai X, Thong J T L, Li B W, Qiu C W 2014 Adv. Mater. 26 1731Google Scholar

  • 图 1  弹性模量ρ和体弹性模量K的参数空间图 (a) 负质量密度超构材料, ρ < 0, K > 0; (b) 天然材料, ρ > 0, K > 0; (c) 双负超构材料, ρ < 0, K < 0; (d) 负体弹性模量超构材料, ρ > 0, K < 0

    Figure 1.  Parameter space for mass density ρ and bulk modulus K: (a) Metamaterials with negative effective mass density, ρ < 0, K > 0; (b) natural materials, ρ > 0, K > 0; (c) double-negative metamaterials, ρ < 0, K < 0; (d) metamaterials with negative effective bulk modulus, ρ > 0, K < 0

    图 2  (a)斯涅耳定律; (b)广义斯涅耳定律

    Figure 2.  (a) Snell’s law; (b) generalized Snell’s law.

    图 3  声学超构表面的三种典型形式及其物理效应 (a)反射型超构表面; (b)透射型超构表面; (c)吸收型超构表面;(d)自弯曲波束调控; (e)声学全息成像; (f)低频完美吸声体

    Figure 3.  Three typical forms of acoustic metasurfaces and their physical effects: (a) Reflective metasurfaces; (b) transmissive metasurfaces; (c) absorbing metasurfaces; (d) the self-bending beam; (e) acoustic holographic imaging; (f) perfect sound absorber at low frequency

    图 4  吸声超构材料 (a)薄膜型结构; (b)亥姆赫兹共振结构; (c) Fabry-Pérot共振结构; (d)优化的宽频吸声谱

    Figure 4.  Sound absorbing metamaterial: (a) Membrane-type structure; (b) Helmholtz resonator structure; (c) Fabry-Pérot resonator structure; (d) optimized broadband sound absorption spectrum

    图 5  (a)负折射声学超透镜; (b)管道结构透镜; (c)扇形声学透镜; (d)薄膜结构超材料

    Figure 5.  (a) Acoustic superlens with negative refractive; (b) holey-structured metamaterial lens; (c) fin-shaped acoustic lens; (d) membrane-type metamaterial.

    图 6  (a)引入环流的声学陈绝缘体及其投影能带; (b)基于模式杂化的声学拓扑绝缘体结构及其投影能带; (c)引入滑移对称性的三维拓扑声子晶体及其投影能带

    Figure 6.  (a) Acoustic topological Chern insulator by incorporating the circulating flow and its projected energy band; (b) acoustic topological insulator based on hybridized modes and its projected energy band; (c) three-dimensional topological acoustic crystals with glide symmetry and its projected energy band.

  • [1]

    Liu Z Y, Zhang X X, Mao Y W, Zhu Y Y, Yang Z, Chan C T, Sheng P 2000 Science 289 1734Google Scholar

    [2]

    Zheludev N I, Kivshar Y S 2012 Nat. Mater. 11 917Google Scholar

    [3]

    Cummer S A, Christensen J, Alù A 2016 Nat. Rev. Mater. 1 16001Google Scholar

    [4]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966Google Scholar

    [5]

    Kaina N, Lemoult F, Fink M, Lerosey G 2015 Nature 525 77Google Scholar

    [6]

    Yang Z Y, Mei J, Yang M, Chan N, Sheng P 2008 Phys. Rev. Lett. 101 204301Google Scholar

    [7]

    Fang N, Xi D, Xu J, Ambati M, Srituravanich W, Sun C, Zhang X 2006 Nat. Mater. 5 452Google Scholar

    [8]

    Christensen J, Martín-Moreno L, García-Vidal F J 2010 Appl. Phys. Lett. 97 134106Google Scholar

    [9]

    Li J, Chan C T 2004 Phys. Rev. E 70 055602Google Scholar

    [10]

    Lee S H, Park C M, Seo Y M, Wang Z G, Kim C K 2010 Phys. Rev. Lett. 104 054301Google Scholar

    [11]

    Brunet T, Merlin A, Mascaro B, Zimny K, Leng J, Poncelet O, Aristégui C, Mondain-Monval O 2015 Nat. Mater. 14 384

    [12]

    Liang Z X, Li J S 2012 Phys. Rev. Lett. 108 114301Google Scholar

    [13]

    Xie Y B, Popa B, Zigoneanu L, Cummer S A 2013 Phys. Rev. Lett. 110 175501Google Scholar

    [14]

    Christensen J, de Abajo F J G 2012 Phys. Rev. Lett. 108 124301Google Scholar

    [15]

    García-Chocano V M, Christensen J, Sánchez-Dehesa J 2014 Phys. Rev. Lett. 112 144301Google Scholar

    [16]

    Fleury R, Alù A 2013 Phys. Rev. Lett. 111 055501Google Scholar

    [17]

    Liberal I, Engheta N 2017 Nat. Photon. 11 149Google Scholar

    [18]

    Dubois M, Shi C Z, Zhu X F, Wang Y, Zhang X 2017 Nat. Commun. 8 14871Google Scholar

    [19]

    Assouar B, Liang B, Wu Y, Li Y, Cheng J C, Jing Y 2018 Nat. Rev. Mater. 3 460Google Scholar

    [20]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [21]

    Li Y, Liang B, Gu Z M, Zou X Y, Cheng J C 2013 Sci. Rep. 3 2546Google Scholar

    [22]

    Li Y, Jiang X, Liang B, Cheng J C, Zhang L K 2015 Phys. Rev. Appl. 4 024003Google Scholar

    [23]

    Melde K, Mark A G, Qiu T, Fischer P 2016 Nature 537 518Google Scholar

    [24]

    Xie Y, Shen C, Wang W, Li J, Suo D, Popa B I, Jing Y, Cummer S A 2016 Sci. Rep. 6 35437Google Scholar

    [25]

    Zhu Y, Hu J, Fan X, Yang J, Liang B, Zhu X, Cheng J 2018 Nat. Commun. 9 1632Google Scholar

    [26]

    Shi C Z, Dubois M, Wang Y, Zhang X 2017 Proc. Natl. Acad. Sci. USA 114 7250Google Scholar

    [27]

    Jiang X, Liang B, Cheng J C, Qiu C W 2018 Adv. Mater. 30 1800257Google Scholar

    [28]

    Jiang X, Li Y, Liang B, Cheng J C, Zhang L K 2016 Phys. Rev. Lett. 117 034301Google Scholar

    [29]

    Ma G C, Fan X Y, Sheng P, Fink M 2018 Proc. Natl. Acad. Sci. USA 115 6638Google Scholar

    [30]

    Li Y, Assouar B M 2016 Appl. Phys. Lett. 108 063502

    [31]

    Shen C, Cummer S A 2018 Phys. Rev. Appl. 9 054009Google Scholar

    [32]

    Jiménez N, Huang W, Romero-García V, Pagneux V, Groby J P 2016 Appl. Phys. Lett. 109 121902Google Scholar

    [33]

    Chen J, Xiao J, Lisevych D, Shakouri A, Fan Z 2018 Nat. Commun. 9 4920Google Scholar

    [34]

    Ma F Y, Huang M, Xu Y C, Wu J H 2018 Sci. Rep. 8 5906Google Scholar

    [35]

    Li J F, Shen C, Díaz-Rubio A, Tretyakov S A, Cummer S A 2018 Nat.Commun. 9 1342Google Scholar

    [36]

    Quan L, Ra’di Y, Sounas D L, Alù A 2018 Phys. Rev. Lett. 120 254301Google Scholar

    [37]

    Lu M H, Feng L, Chen Y F 2009 Mater. Today 12 34

    [38]

    Ge H, Yang M, Ma C, Lu M H, Chen Y F, Fang N, Sheng P 2018 Natl. Sci. Rev. 5 159Google Scholar

    [39]

    Yang M, Sheng P 2017 Annu. Rev. Mater. Res. 47 83Google Scholar

    [40]

    Yang M, Meng C, Fu C X, Li Y, Yang Z Y, Sheng P 2015 Appl. Phys. Lett. 107 104104Google Scholar

    [41]

    Ma G C, Yang M, Xiao S W, Yang Z Y, Sheng P 2014 Nat. Mater. 13 873Google Scholar

    [42]

    Jiménez N, Romero-García V, Pagneux V, Groby J P 2017 Phys. Rev. B 95 014205Google Scholar

    [43]

    Jiang X, Liang B, Li R Q, Zou X Y, Yin L L, Cheng J C 2014 Appl. Phys. Lett. 105 243505

    [44]

    Yang M, Chen S Y, Fu C X, Sheng P 2017 Mater. Horiz. 4 673Google Scholar

    [45]

    Ma G C, Sheng P 2016 Sci. Adv. 2 e1501595Google Scholar

    [46]

    Lemoult F, Fink M, Lerosey G 2011 Phys. Rev. Lett. 107 064301Google Scholar

    [47]

    Lemoult F, Kaina N, Fink M, Lerosey G 2013 Nat. Phys. 9 55

    [48]

    Park J J, Park C M, Lee K J B, Lee S H 2015 Appl. Phys. Lett. 106 051901Google Scholar

    [49]

    Ambati M, Fang N, Sun C, Zhang X 2007 Phys. Rev. B 75 195447Google Scholar

    [50]

    Park C M, Park J J, Lee S H, Seo Y M, Kim C K, Lee S H 2011 Phys. Rev. Lett. 107 194301Google Scholar

    [51]

    Zhu J, Christensen J, Jung J, Martin-Moreno L, Yin X, Fok L, Zhang X, Garcia-Vidal F J 2011 Nat. Phys. 7 52

    [52]

    Li J, Fok L, Yin X, Bartal G, Zhang X 2009 Nat. Mater. 8 931Google Scholar

    [53]

    Ma G C, Fan X Y, Ma F Y, de Rosny J, Sheng P, Fink M 2018 Nat. Phys. 14 608Google Scholar

    [54]

    Lanoy M, Pierrat R, Lemoult F, Fink M, Leroy V, Tourin A 2015 Phys. Rev. B 91 224202Google Scholar

    [55]

    Lemoult F, Fink M, Lerosey G 2011 Waves in Random and Complex Media 21 614

    [56]

    Bender C M, Boettcher S 1998 Phys. Rev. Lett. 80 5243Google Scholar

    [57]

    Chong Y D, Ge L, Stone A D 2011 Phys. Rev. Lett. 106 093902Google Scholar

    [58]

    Feng L, Xu Y L, Fegadolli W S, Lu M H, Oliveira J E B, Almeida V R, Chen Y F, Scherer A 2013 Nat. Mater. 12 108

    [59]

    Chang L, Jiang X S, Hua S Y, Yang C, Wen J M, Jiang L, Li G, Wang G Z, Xiao M 2014 Nat. Photon. 8 524Google Scholar

    [60]

    Feng L, Wong Z J, Ma R M, Wang Y, Zhang X 2014 Science 346 972Google Scholar

    [61]

    Zhu X F, Ramezani H, Shi C Z, Zhu J, Zhang X 2014 Phys. Rev. X 4 031042

    [62]

    Shi C Z, Dubois M, Chen Y, Cheng L, Ramezani H, Wang Y, Zhang X 2016 Nat. Commun. 7 11110Google Scholar

    [63]

    Fleury R, Sounas D L, Alù A 2016 IEEE J. Sel. Top. Quant. 22 121Google Scholar

    [64]

    Aurégan Y, Pagneux V 2017 Phys. Rev. Lett. 118 174301Google Scholar

    [65]

    Christensen J, Willatzen M, Velasco V R, Lu M H 2016 Phys. Rev. Lett. 116 207601Google Scholar

    [66]

    Lu M H, Zhang C, Feng L, Zhao J, Chen Y F, Mao Y W, Zi J, Zhu Y Y, Zhu S N, Ming N B 2007 Nat. Mater. 6 744Google Scholar

    [67]

    Lu M H, Liu X K, Feng L, Li J, Huang C P, Chen Y F, Zhu Y Y, Zhu S N, Ming N B 2007 Phys. Rev. Lett. 99 174301Google Scholar

    [68]

    Haldane F D M, Raghu S 2008 Phys. Rev. Lett. 100 013904Google Scholar

    [69]

    Wang Z, Chong Y, Joannopoulos J D, Soljačić M 2009 Nature 461 772Google Scholar

    [70]

    Fleury R, Sounas D L, Sieck C F, Haberman M R, Alù A 2014 Science 343 516Google Scholar

    [71]

    Ni X, He C, Sun X C, Liu X P, Lu M H, Feng L, Chen Y F 2015 New J. Phys. 17 053016Google Scholar

    [72]

    Ding Y J, Peng Y G, Zhu Y F, Fan X D, Yang J, Liang B, Zhu X F, Wan X G, Cheng J C 2019 Phys. Rev. Lett. 122 014302Google Scholar

    [73]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802Google Scholar

    [74]

    König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766Google Scholar

    [75]

    He C, Ni X, Ge H, Sun X C, Chen Y B, Lu M H, Liu X P, Chen Y F 2016 Nat. Phys. 12 1124Google Scholar

    [76]

    Yu S Y, He C, Wang Z, Liu F K, Sun X C, Li Z, Lu H Z, Lu M H, Liu X P, Chen Y F 2018 Nat. Commun. 9 3072Google Scholar

    [77]

    Lu J Y, Qiu C Y, Ye L P, Fan X Y, Ke M Z, Zhang F, Liu Z Y 2017 Nat. Phys. 13 369

    [78]

    Wang Z, Yu S Y, Liu F K, Tian Y, Gupta S K, Lu M H, Chen Y F 2018 Appl. Phys. Express 11 107301Google Scholar

    [79]

    Wang Z, Liu F K, Yu S Y, Yan S L, Lu M H, Jing Y, Chen Y F 2019 J. Appl. Phys. 125 044502Google Scholar

    [80]

    He C, Yu S Y, Ge H, Wang H Q, Tian Y, Zhang H J, Sun X C, Chen Y B, Zhou J, Lu M H, Chen Y F 2018 Nat. Commun. 9 4555Google Scholar

    [81]

    Popa B I, Zigoneanu L, Cummer S A 2011 Phys. Rev. Lett. 106 253901Google Scholar

    [82]

    Zigoneanu L, Popa B I, Cummer S A 2014 Nat. Mater. 13 352Google Scholar

    [83]

    Li X F, Ni X, Feng L, Lu M H, He C, Chen Y F 2011 Phys. Rev. Lett. 106 084301Google Scholar

    [84]

    Valentine J, Zhang S, Zentgraf T, Ulin-Avila E, Genov D A, Bartal G, Zhang X 2008 Nature 455 376Google Scholar

    [85]

    Xiao S, Drachev V P, Kildishev A V, Ni X, Chettiar U K, Yuan H-K, Shalaev V M 2010 Nature 466 735Google Scholar

    [86]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977Google Scholar

    [87]

    Watts C M, Liu X, Padilla W J 2012 Adv. Mater. 24 OP98

    [88]

    Berger J B, Wadley H N G, McMeeking R M 2017 Nature 543 533Google Scholar

    [89]

    Frenzel T, Kadic M, Wegener M 2017 Science 358 1072Google Scholar

    [90]

    Han T C, Bai X, Liu D, Gao D L, Li B, Thong J T L, Qiu C W 2015 Sci. Rep. 5 10242Google Scholar

    [91]

    Han T C, Bai X, Thong J T L, Li B W, Qiu C W 2014 Adv. Mater. 26 1731Google Scholar

  • [1] Jiang Jing, Wang Xiao-Yun, Kong Peng, Zhao He-Ping, He Zhao-Jian, Deng Ke. Dislocation defect states in acoustic quadrupole topological insulators. Acta Physica Sinica, 2024, 73(15): 154302. doi: 10.7498/aps.73.20240640
    [2] Huang Ze-Xin, Sheng Zong-Qiang, Cheng Le-Le, Cao San-Zhu, Chen Hua-Jun, Wu Hong-Wei. Steering non-Hermitian skin states by engineering interface in 1D nonreciprocal acoustic crystal. Acta Physica Sinica, 2024, 73(21): 214301. doi: 10.7498/aps.73.20241087
    [3] Yang Hao-Zhi, Nie Meng-Jiao, Ma Guang-Peng, Cao Hui-Qun, Lin Dan-Ying, Qu Jun-Le, Yu Bin. Digital micromirror device-based fast super-resolution lattice structured light illumination microscopy. Acta Physica Sinica, 2024, 73(9): 098702. doi: 10.7498/aps.73.20240216
    [4] Zhang Xiao-Yue, Xu Hua-Feng, Chen Wan-Na, Zhou Nong, Sun Wen-Jun, Wu Hong-Wei. Manipulation of directional acoustic spin angular momentum density based on gradient-structured waveguides. Acta Physica Sinica, 2024, 73(14): 144301. doi: 10.7498/aps.73.20240484
    [5] Ling Jin-Zhong, Guo Jin-Kun, Wang Yu-Cheng, Liu Xin, Wang Xiao-Rui. Research on spatial frequency shift super-resolution imaging based on evanescent wave illumination. Acta Physica Sinica, 2023, 72(22): 224202. doi: 10.7498/aps.72.20230934
    [6] Li Yin-Ming, Kong Peng, Bi Ren-Gui, He Zhao-Jian, Deng Ke. Valley topological states in double-surface periodic elastic phonon crystal plates. Acta Physica Sinica, 2022, 71(24): 244302. doi: 10.7498/aps.71.20221292
    [7] Ge Yang-Yang, He Zhuo-Fen, Huang Li-Lin, Lin Dan-Ying, Cao Hui-Qun, Qu Jun-Le, Yu Bin. Flat-field multiplexed multifocal structured illumination super-resolution microscopy. Acta Physica Sinica, 2022, 71(4): 048704. doi: 10.7498/aps.71.20211712
    [8] Flat-field multiplexed multifocal structured illumination super-resolution microscopy. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211712
    [9] Zheng Zhou-Fu, Yin Jian-Fei, Wen Ji-Hong, Yu Dian-Long. Topologically protected edge states of elastic waves in phononic crystal plates. Acta Physica Sinica, 2020, 69(15): 156201. doi: 10.7498/aps.69.20200542
    [10] Zhang Jia, Samanta Soham, Wang Jia-Lin, Wang Lu-Wei, Yang Zhi-Gang, Yan Wei, Qu Jun-Le. Study on a novel probe for stimulated emission depletion Super-resolution Imaging of Mitochondria. Acta Physica Sinica, 2020, 69(16): 168702. doi: 10.7498/aps.69.20200171
    [11] Geng Zhi-Guo, Peng Yu-Gui, Shen Ya-Xi, Zhao De-Gang, Zhu Xue-Feng. Topological acoustic transports in chiral sonic crystals. Acta Physica Sinica, 2019, 68(22): 227802. doi: 10.7498/aps.68.20191007
    [12] Jia Ding, Ge Yong, Yuan Shou-Qi, Sun Hong-Xiang. Dual-band acoustic topological insulator based on honeycomb lattice sonic crystal. Acta Physica Sinica, 2019, 68(22): 224301. doi: 10.7498/aps.68.20190951
    [13] Wang Jian, Wu Shi-Qiao, Mei Jun. Topological phase transitions caused by a simple rotational operation in two-dimensional acoustic crystals. Acta Physica Sinica, 2017, 66(22): 224301. doi: 10.7498/aps.66.224301
    [14] Chen Ze-Guo, Wu Ying. Multiple topological phases in phononic crystals. Acta Physica Sinica, 2017, 66(22): 227804. doi: 10.7498/aps.66.227804
    [15] Du Chun-Yang, Yu Dian-Long, Liu Jiang-Wei, Wen Ji-Hong. Flexural vibration band gaps for a phononic crystal beam with X-shaped local resonance metadamping structure. Acta Physica Sinica, 2017, 66(14): 140701. doi: 10.7498/aps.66.140701
    [16] Lin Dan-Ying, Qu Jun-Le. Recent progress on super-resolution imaging and correlative super-resolution microscopy. Acta Physica Sinica, 2017, 66(14): 148703. doi: 10.7498/aps.66.148703
    [17] Liu Hong-Ji, Liu Shuang-Long, Niu Han-Ben, Chen Dan-Ni, Liu Wei. A super-resolution infrared microscopy based on a doughnut pump beam. Acta Physica Sinica, 2016, 65(23): 233601. doi: 10.7498/aps.65.233601
    [18] Dong Hua-Feng, Wu Fu-Gen, Mu Zhong-Fei, Zhong Hui-Lin. Effect of basis configuration on acoustic band structure in two-dimensional complex phononic crystals. Acta Physica Sinica, 2010, 59(2): 754-758. doi: 10.7498/aps.59.754
    [19] Hao Guo-Jun, Fu Xiu-Jun, Hou Zhi-Lin. Band structure of phononic crystal constructed by Fibonacci super-cell on square lattice. Acta Physica Sinica, 2009, 58(12): 8484-8488. doi: 10.7498/aps.58.8484
    [20] Mu Zhong-Fei, Wu Fu-Gen, Zhang Xin, Zhong Hui-Lin. Effect of translation group symmetry on phononic band gaps studied by supercell calculation. Acta Physica Sinica, 2007, 56(8): 4694-4699. doi: 10.7498/aps.56.4694
Metrics
  • Abstract views:  30672
  • PDF Downloads:  1818
  • Cited By: 0
Publishing process
  • Received Date:  31 May 2019
  • Accepted Date:  03 July 2019
  • Available Online:  01 October 2019
  • Published Online:  05 October 2019

/

返回文章
返回