-
Acoustic skyrmion modes are topological texture structures of velocity field vectors generated on the surface of acoustic structures. This protected vector distribution provides new dimensions for advanced sound information processing, transmission, and data storage. In this study, we design a combined structure of waveguides and spiral structures, using directional acoustic sources to excite waveguide mode transmission, thereby achieving selective excitation of localized acoustic skyrmion modes. Through theoretical analysis and numerical simulations, we studied the pressure field distribution and velocity field distribution excited by spin acoustic sources, Huygens acoustic sources, and Janus acoustic sources in this structure, demonstrating the directional transmission properties of acoustic surface waves and the selectively excited acoustic skyrmion modes in the combined structure. Numerical calculations reveal that when the spin acoustic source excites acoustic surface waves to propagate directionally along the waveguide, it selectively excites the acoustic skyrmion modes in the helical structure in the direction corresponding to the propagation. When the Huygens source excites acoustic surface waves to propagate directionally along the waveguide, it selectively excites acoustic skyrmion modes in the right or left direction. However, when the Janus source excites acoustic surface waves propagating directionally along the waveguide, it will selectively excite acoustic skyrmion modes in the upward or downward direction. This waveguide excitation method is a new means of exciting acoustic skyrmion modes, making the excitation of acoustic skyrmion modes more flexible. Moreover, this waveguide excitation method has significant application potential in more complex and larger-scale acoustic systems. The research results may promote the understanding of the symmetry in acoustic near-field physics, opening new pathways for using sound waves to manipulate particles, and potentially paving the way for the design of advanced acoustic devices.
-
[1] Skyrme T H R 1962Nucl. Phys 31 556
[2] Adkins G S, Nappi C R, Witten E 1983Nucl. Phys 228 3
[3] Khawaja U AI, Stoof H 2001Nature 411 918
[4] Su S W, Liu I K, Tsai Y C, Liu W M, Gou S C 2012Phys. Rev. A 86 023601
[5] Fukuda J I, Zumer S 2011Nat. Commun 2 246
[6] Duzgun A, Selinger J, Saxena A 2018Phys. Rev. E 97 062706
[7] Robler U K, Bogdanov A N, Pfleiderer C 2006Nature 4427104
[8] Tokura Y, Kanazawa N 2021Chem. Rev 121 5
[9] Muhlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Boni P 2009Science 323 5916
[10] Yu X Z, Koshibae W, Tokunaga Y, Shibata K, Taguchi Y, Nagaosa N, Tokura Y 2018Nature 564 95
[11] Chen C, Ma M Y, Pan F, Song C 2024Acta Phys. Sin 73 5(in Chinese) [陈崇, 马铭远, 潘峰, 宋成2024物理学报73 5]
[12] Zhang X C, Xia J, Zhou Y, Wang D W, Liu X X, Zhao W S, Ezawa M 2016Phys. Rev. B 94 094420
[13] Zhang S L, Kronast F, Van der Laan G, Hesjedal T 2018Nano Lett 18 2
[14] Bhukta M M M, Mishra A, Pradhan G, Mallick S, Singh B B, Bedanta S 2018arXiv 1810:08262
[15] Kezsmarki I, Bordacs S, Milde P, Neuber E, Eng L M, White J S, Ronnow H M, Dewhurst C D, Mochizuki M, Yanai K, Nakamura H, Ehlers D, Tsurkan V, Loidl A 2015Nat. Mater 14 1116
[16] Nayak A K, Kumar V, Ma T, Werner P, Pippel E, Sahoo R, Damay F, Robler U K, Felser C, Parkin S S P 2017Nature 548 561
[17] Gilbert D A, Maranville B B, Balk A L, Kirby B J, Fischer P, Pierce D T, Unguris J, Borchers J A, Liu K 2015 Nat. Commun 6 8462
[18] Xia J, Zhang X C, Ezawa M, Tretiakov O A, Hou Z P, Wang W H, Zhao G P, Liu X X, Diep H T, Zhou Y 2020Appl. Phys. Let 117 012403
[19] Nagaosa N, Tokura Y 2013Nat. Nanotechnol 8 899
[20] Fert A, Reyren N, Cros V 2017Nat. Rev. Mater 2 17031
[21] Du L P, Yang A P, Zayats A V, Yuan X C 2019Nat. Phys 15 650
[22] Davis T J, Janoschka D, Dreher P, Frank B, Meyer zu Heringdorf F J, Giessen H 2020Science 368 6489
[23] Tsesses S, Ostrovsky E, Cohen K, Gjonaj B, Lindner N H, Bartal G 2018Science 361 6406
[24] Bai C Y, Chen J, Zhang Y X, Zhang D W 2020 Opt Express 28 10320
[25] Bliokh K Y, Rodriguez-Fortuno F J, Nori F, Zayats A V 2015Nat. Photonics 9 796
[26] Shi P, Du L P, Yuan X C 2020Nanophotonics 9 4619
[27] Karnieli A, Tsesses S, Bartal G, Arie A 2021Nat. Commun 12 1092
[28] Deng Z L, Shi T, Krasnok A, Li X P, Alu A 2022Nat. Commun 13 1
[29] Li X H, Liu L L, Zhou Z X, Shen J R, Zhang Y R, Han G D, Li Z 2022Adv. Opt. Mater 10 15
[30] Shi C Z, Zhao R K, Long Y, Yang S, Wang Y, Chen H, Ren J, Zhang X 2019Natl. Sci. Rev 6 4
[31] Burns L, Bliokh K Y, Nori F, Dressel J 2020New. J. Phys 22 053050
[32] Long Y, Zhang D M, Yang C W, Ge J M, Chen H, Ren J 2020Nat. Commun 11 4716
[33] Bliokh K Y, Nori F 2019Phys. Rev. B 99 020301
[34] Bliokh K Y, Nori F2019Phys. Rev. B 99 174310
[35] Weiner M, Ni X, Alu A, Khanikaev A B 2022Nat. Commun 13 6332
[36] Long Y, Ge H, Zhang D M, Xu X Y, Ren J, Lu M H, Bao M, Chen H, Chen Y F 2020NSR 7 6
[37] Sun Q L, Peng Y G, Gao F, Li B, Zhu X F 2023Phys. Rev. Appl 20 024025
[38] Ge H, Xu X Y, Liu L, Xu R, Lin Z K, Yu S Y, Bao M, Jiang J H, Lu M H, Chen Y F 2021Phys. Rev. Lett 127 144502
[39] Hu P, Wu H W, Sun W J, Zhou N, Chen X, Yang Y Q, Sheng Z Q 2023Appl. Phys. Lett 122 022201
[40] Cselyuszka N, Secujski M, Engheta N, Crnojevic-Bengin V 2016New. J. Phys 18 103006
[41] Zhu J, Chen Y Y, Zhu X F, Garcia-Vidal F J, Yin X B, Zhang W L, Zhang X 2013Sci. Rep 3 1728
[42] Jia H, Lu M H, Ni X, Bao M, Li X D 2014 J. Appl. Phys 116 124504
[43] Ooi K, Okada T, Tanaka K 2011Phys. Rev. B 84 115405
[44] Xie P X, Sheng Z Q, Huang Z X, Hu P, Wu H W 2023 Appl. Phys. Lett 122 222202
[45] Morse P, Ingard K 1986Theoretical Acoustics (Princeton: Princeton University Press)
[46] Zhang X Y, Xu H F, Chen W N, Zhou N, Sun W J, Wu H W 2024Acta Phys. Sin 73 14(in Chinese) [张孝悦,徐华锋,陈婉娜,周农,孙文军,吴宏伟2024物理学报73 14]
Metrics
- Abstract views: 106
- PDF Downloads: 0
- Cited By: 0