Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Manipulation of directional acoustic spin angular momentum density based on gradient-structured waveguides

Zhang Xiao-Yue Xu Hua-Feng Chen Wan-Na Zhou Nong Sun Wen-Jun Wu Hong-Wei

Citation:

Manipulation of directional acoustic spin angular momentum density based on gradient-structured waveguides

Zhang Xiao-Yue, Xu Hua-Feng, Chen Wan-Na, Zhou Nong, Sun Wen-Jun, Wu Hong-Wei
PDF
HTML
Get Citation
  • In recent years, the discovery of the transverse spin of acoustic wave in a structural acoustic field and acoustic structural surface wave has expanded our knowledge of the basic characteristics of acoustic waves and opened up new avenues for their manipulation. On the structured surface, however, the distribution of acoustic surface waves often presents a uniform distribution, which restricts the local modification of acoustic spin angular momentum and particle manipulation capabilities. In this study, we develop some acoustic waveguides with gradients that are flat, up-convex, and down-concave in order to manipulate the lateral spin distributions of acoustic surface waves. We verify the direction-locking near-field acoustic spin-momentum, explore the pressure field distribution and the spin angular momentum density distribution of a spin acoustic source excited in each of the three gradient structures, and we also show how to manipulate the spin intensity distributions of acoustic surface waves in the gradient waveguides through theoretical analysis and numerical simulation. The numerical calculation results show that when the acoustic surface wave is excited by a clockwise rotating spin source and propagates along the left side of the waveguide, the spin angular momentum density is positive on the upper surface of the structured waveguide and negative on the lower surface. The spin angular momentum distribution and the direction of propagation of acoustic wave are entirely changed when the spin source is rotated counterclockwise. Specifically, an unequal distribution of acoustic spin angular momentum is produced by the upper convex-type waveguide and bottom concave-type waveguide when we convert the flat-type acoustic structure waveguide into a gradient-type waveguide. According to the computation results, the down-concave type waveguide exhibits a stronger density of acoustic spin angular momentum at the end and the acoustic surface waves gather at the end of the constructed waveguide. On the other hand, the waveguide collects acoustic waves close to the structure center when it is an up-convex structural waveguide. The findings can open up new avenues for manipulating particles using acoustic waves, by providing a means for controlling the acoustic spin angular momentum density and improving our understanding of symmetry in acoustic near-field physics.
      Corresponding author: Xu Hua-Feng, xhfeng716@126.com ; Wu Hong-Wei, hwwu@aust.edu.cn
    • Funds: Project supported by the Natural Science Foundation of the Higher Education Institutions of Anhui Province, China (Grant Nos. 2023AH051206, 2022AH040114) and the University Synergy Innovation Program of Anhui Province, China (Grant No. GXXT-2022-015).
    [1]

    Belinfante F J 1939 Physica 6 7

    [2]

    Ohanian H C 1986 Am. J. Phys. 54 6

    [3]

    Belinfante F J 1940 Physica 7 5

    [4]

    Andrews D L, Babiker M 2012 The Angular Momentum of Light (Cambridge: Cambridge University Press

    [5]

    Bliokh K Y, Bekshaev A Y, Nori F 2014 Nat. Commun. 5 3300Google Scholar

    [6]

    Bekshaev A Y, Bliokh K Y, Nori F 2015 Phys. Rev. X 5 011039

    [7]

    Aiello A, Banzer P, Neugebauer M, Leuchs G 2015 Nat. Photonics 9 12

    [8]

    Rodriguez-Fortuño F J, Marino G, Ginzburg P, O’Connor D, Martinez A, Wurtz G A, Zayats A V 2013 Science 2013 340 6130

    [9]

    Petersen J, Volz J, Rauschenbeutel A 2014 Science 346 6205

    [10]

    Bliokh K Y, Smirnova D, Nori F Q 2015 Science 348 6242

    [11]

    Bliokh K Y, Nori F 2015 Phys. Rep. 592 1Google Scholar

    [12]

    Lodahl P, Mahmoodian S, Stobbe S, Rauschenbeutel A, Schneeweiss P, Volz J, Pichler H, Zoller P 2017 Nature 541 7638

    [13]

    Shomroni I, Rosenblum S, Lovsky Y, Bechler O, Guendelman G, Dayan B 2014 Science 345 6199

    [14]

    Sollner I, Mahmoodian S, Hansen S L, Midolo L, Javadi A, Kiršanskė G, Pregnolato T, El-Ella H, Lee E H, Song J D, Stobbe S, Lodahl P 2015 Nat. Nanotechnol. 10 9Google Scholar

    [15]

    Rosenblum S, Bechler O, Shomroni I, Lovsky Y, Guendelman G, Dayan B 2016 Nat. Photonics 10 19Google Scholar

    [16]

    Scheucher M, Hilico A, Will E, Volz J, Rauschenbeutel A 2016 Science 354 6319

    [17]

    Crocker M J 1998 Handbook of Acoustics (New York: Wiley

    [18]

    Long Y, Ren J, Chen H 2018 PNAS 115 40

    [19]

    Shi C Z, Zhao R K, Long Y, Yang S, Wang Y, Chen H, Ren J, Zhang X 2019 NSR 6 4

    [20]

    Bliokh K Y, Nori F 2019 Phys. Rev. B 99 020301

    [21]

    Long Y, Ge H, Zhang D M, Xu X Y, Ren J, Lu M H, Bao M, Chen H, Chen Y F 2020 NSR 7 6

    [22]

    Hu P, Wu H W, Sun W J, Zhou N, Chen X, Yang Y Q, Sheng Z Q 2023 Appl. Phys. Lett. 122 022201Google Scholar

    [23]

    Sun W J, Wu H W, Hu P, Zhou N, Chen X, Yang Y Q, Sheng Z Q 2023 Appl. Phys. Lett. 122 202201Google Scholar

    [24]

    Bliokh K Y, Nori F 2019 Phys. Rev. B 99 174310Google Scholar

    [25]

    Long Y, Zhang D M, Yang C W, Ge J M, Chen H, Ren J 2020 Nat. Commun. 11 4716Google Scholar

    [26]

    Weiner M, Ni X, Alu A, Khanikaev A B 2022 Nat. Commun. 13 6332Google Scholar

    [27]

    Cselyuszka N, Sečujski M, Engheta N, Crnojević-Bengin V 2016 New J. Phys. 18 103006Google Scholar

    [28]

    Zhu J, Chen Y Y, Zhu X F, Garcia-Vidal F J, Yin X B, Zhang W L, Zhang X 2013 Sci. Rep. 3 1728Google Scholar

    [29]

    Jia H, Lu M H, Ni X, Bao M, Li X D 2014 J. Appl. Phys. 116 124504Google Scholar

    [30]

    Ooi K, Okada T , Tanaka K 2011 Phys. Rev. B 84 115405

    [31]

    Xie P X, Sheng Z Q, Huang Z X, Hu P, Wu H W 2023 Appl. Phys. Lett. 122 222202Google Scholar

    [32]

    Long Y, Yang C W, Chen H, Ren J 2023 Phys. Rev. Appl. 19 064053Google Scholar

  • 图 1  (a) 平整型一维结构声学波导示意图; (b) 不同波导宽度$ {\mathrm{W}} $色散关系曲线; (c)声学表面波沿波导前后向传输比随频率变化的曲线图; (d) 顺时针旋转的自旋声源定向激发声学表面波沿波导向左传播, $ W=10\;{\mathrm{c}}{\mathrm{m}} $, 频率$ f=0.93\;{\mathrm{k}}{\mathrm{H}}{\mathrm{z}} $; (e) 声学表面波的声学自旋角动量密度分布; (f)声学表面波沿波导向左传播的声压强度变化曲线图; (g) 逆时针旋转的自旋声源定向激发声学表面波沿波导向右传播; (h)声学表面波的声学自旋角动量密度分布; (i)声学表面波沿波导向右传播的声压强度分布曲线图

    Figure 1.  (a) Schematic diagram of the flat one-dimensional structured acoustic waveguide; (b) dispersion relation curves for different waveguide widths $ {{W}} $; (c) plotting of the forward-backward transmission ratio fluctuation with frequency of acoustic surface wave propagation along the waveguide; (d) directional excitation of acoustic surface waves along the waveguide propagating to the left by a clockwise rotating spin acoustic sources, $ W=10\;{\mathrm{ }}{\mathrm{c}}{\mathrm{m}} $, $ f=0.93\;{\mathrm{ }}{\mathrm{k}}{\mathrm{H}}{\mathrm{z}} $; (e) density distribution of the acoustic spin angular momentum of the acoustic surface waves; (f) variation of the acoustic pressure strength along the waveguide for the directionally excited leftward propagation of an acoustic surface wave; (g) directional excitation of acoustic surface waves along the waveguide propagating to the left by the counterclockwise rotating spin acoustic sources; (h) acoustic spin angular momentum density distribution of acoustic surface waves; (i) plot illustrates the variation in sound pressure intensity for the rightward propagation of the acoustic surface waves along the waveguide.

    图 2  (a) 实验装置; (b) 顺时针与逆时针旋转的自旋声源定向激发声学表面波沿波导定向传播, 频率$ f=1.69\;{\mathrm{ }}{\mathrm{k}}{\mathrm{H}}{\mathrm{z}} $; (c) 仿真, 声学表面波沿波导传播的声压强度变化; (d) 实验, 声学表面波沿波导传播的声压强度变化

    Figure 2.  (a) Experimental setup; (b) directional excitation of acoustic surface waves along waveguides by clockwise and counterclockwise rotating spin acoustic sources, $ f=1.69\;{\mathrm{ }}{\mathrm{k}}{\mathrm{H}}{\mathrm{z}} $; (c) simulation, acoustic pressure intensity variation of acoustic surface waves propagating along a waveguide; (d) experiment, acoustic pressure intensity variation of acoustic surface waves propagating along a waveguide.

    图 3  (a) 下凹型一维结构声学波导示意图和声学表面波沿波导前后向传输比随频率变化的曲线图; (b) 顺时针与逆时针旋转的自旋声源定向激发声学表面波沿波导定向传播, 频率$ f=0.75\;{\mathrm{ }}{\mathrm{k}}{\mathrm{H}}{\mathrm{z}} $; (c) 下凹型波导上的自旋角动量密度分布; (d) 上凸型一维结构声学波导示意图和声学表面波沿波导前后向传输比随频率变化的曲线图; (e) 顺时针与逆时针旋转的自旋声源定向激发声学表面波沿波导定向传播, $ f=0.75\;{\mathrm{ }}{\mathrm{k}}{\mathrm{H}}{\mathrm{z}} $; (f) 上凸型波导上的自旋角动量密度分布

    Figure 3.  (a) Schematic diagram of an acoustic waveguide with a concave one-dimensional structure and the variation of the forward-to-backward transmission ratio of an acoustic surface wave along the waveguide as a function of frequency; (b) directional excitation of acoustic surface waves along waveguides by clockwise and counterclockwise rotating spin acoustic sources, $ f=0.75\;{\mathrm{ }}{\mathrm{k}}{\mathrm{H}}{\mathrm{z}} $; (c) spin angular momentum density distribution on the concave waveguide; (d) schematic diagram of an up-convex one-dimensional structured acoustic waveguide and the variation of the forward-backward transmission ratio of acoustic surface waves along the waveguide with frequency; (e) directional excitation of acoustic surface waves along waveguides by clockwise and counterclockwise rotating spin acoustic sources, $ f=0.75\;{\mathrm{ }}{\mathrm{k}}{\mathrm{H}}{\mathrm{z}} $; (f) spin angular momentum density distribution on the upper convex waveguide.

    图 4  (a)下凹型一维结构声学波导示意图和声学表面波沿波导前后向传输比随频率变化的曲线图; (b) 顺时针与逆时针旋转的自旋声源定向激发声学表面波沿波导定向传播, 频率$ f=0.79\;{\mathrm{ }}{\mathrm{k}}{\mathrm{H}}{\mathrm{z}} $; (c) 下凹型波导上的自旋角动量密度分布; (d) 上凸型一维结构声学波导示意图和声学表面波沿波导前后向传输比随频率变化的曲线图; (e) 顺时针与逆时针旋转的自旋声源定向激发声学表面波沿波导定向传播, $ f=1.0\;{\mathrm{ }}{\mathrm{k}}{\mathrm{H}}{\mathrm{z}} $; (f) 上凸型波导上的自旋角动量密度分布

    Figure 4.  (a) Schematic diagram of an acoustic waveguide with a concave one-dimensional structure and the variation of the forward-to-backward transmission ratio of an acoustic surface wave along the waveguide as a function of frequency; (b) directional propagation of acoustic surface waves along the waveguide directionally excited by the clockwise and counterclockwise rotating spin acoustic sources, $ f=0.79\;{\mathrm{ }}{\mathrm{k}}{\mathrm{H}}{\mathrm{z}} $; (c) spin angular momentum density distribution on the concave waveguide; (d) schematic diagram of an up-convex one-dimensional structured acoustic waveguide and the variation of the forward-backward transmission ratio of acoustic surface waves along the waveguide with frequency; (e) directional propagation of acoustic surface waves along the waveguide directionally excited by the clockwise and counterclockwise rotating spin acoustic sources, $ f=1.0\;{\mathrm{ }}{\mathrm{k}}{\mathrm{H}}{\mathrm{z}} $; (f) spin angular momentum density distribution on the upper convex waveguide.

    图 5  (a) 以波峰为对称中心的一维结构声学波导示意图和声学表面波沿波导前后向传输比随频率变化的曲线图; (b) 顺时针与逆时针旋转的自旋声源定向激发声学表面波沿波导定向传播, $ f=0.91\;{\mathrm{ }}{\mathrm{k}}{\mathrm{H}}{\mathrm{z}} $; (c) 以波峰为对称中心的波导上的自旋角动量密度分布

    Figure 5.  (a) Schematic diagram of a one-dimensional structured acoustic waveguide with the wave crest as the center of symmetry and the variation of the forward-backward transmission ratio of acoustic surface waves along the waveguide as a function of frequency; (b) directional excitation of acoustic surface waves propagating along the waveguide by the clockwise and counterclockwise rotating spin acoustic sources, $ f=0.91\;{\mathrm{ }}{\mathrm{k}}{\mathrm{H}}{\mathrm{z}} $; (c) density distribution of spin angular momentum on the waveguide with the crest as the center of symmetry.

  • [1]

    Belinfante F J 1939 Physica 6 7

    [2]

    Ohanian H C 1986 Am. J. Phys. 54 6

    [3]

    Belinfante F J 1940 Physica 7 5

    [4]

    Andrews D L, Babiker M 2012 The Angular Momentum of Light (Cambridge: Cambridge University Press

    [5]

    Bliokh K Y, Bekshaev A Y, Nori F 2014 Nat. Commun. 5 3300Google Scholar

    [6]

    Bekshaev A Y, Bliokh K Y, Nori F 2015 Phys. Rev. X 5 011039

    [7]

    Aiello A, Banzer P, Neugebauer M, Leuchs G 2015 Nat. Photonics 9 12

    [8]

    Rodriguez-Fortuño F J, Marino G, Ginzburg P, O’Connor D, Martinez A, Wurtz G A, Zayats A V 2013 Science 2013 340 6130

    [9]

    Petersen J, Volz J, Rauschenbeutel A 2014 Science 346 6205

    [10]

    Bliokh K Y, Smirnova D, Nori F Q 2015 Science 348 6242

    [11]

    Bliokh K Y, Nori F 2015 Phys. Rep. 592 1Google Scholar

    [12]

    Lodahl P, Mahmoodian S, Stobbe S, Rauschenbeutel A, Schneeweiss P, Volz J, Pichler H, Zoller P 2017 Nature 541 7638

    [13]

    Shomroni I, Rosenblum S, Lovsky Y, Bechler O, Guendelman G, Dayan B 2014 Science 345 6199

    [14]

    Sollner I, Mahmoodian S, Hansen S L, Midolo L, Javadi A, Kiršanskė G, Pregnolato T, El-Ella H, Lee E H, Song J D, Stobbe S, Lodahl P 2015 Nat. Nanotechnol. 10 9Google Scholar

    [15]

    Rosenblum S, Bechler O, Shomroni I, Lovsky Y, Guendelman G, Dayan B 2016 Nat. Photonics 10 19Google Scholar

    [16]

    Scheucher M, Hilico A, Will E, Volz J, Rauschenbeutel A 2016 Science 354 6319

    [17]

    Crocker M J 1998 Handbook of Acoustics (New York: Wiley

    [18]

    Long Y, Ren J, Chen H 2018 PNAS 115 40

    [19]

    Shi C Z, Zhao R K, Long Y, Yang S, Wang Y, Chen H, Ren J, Zhang X 2019 NSR 6 4

    [20]

    Bliokh K Y, Nori F 2019 Phys. Rev. B 99 020301

    [21]

    Long Y, Ge H, Zhang D M, Xu X Y, Ren J, Lu M H, Bao M, Chen H, Chen Y F 2020 NSR 7 6

    [22]

    Hu P, Wu H W, Sun W J, Zhou N, Chen X, Yang Y Q, Sheng Z Q 2023 Appl. Phys. Lett. 122 022201Google Scholar

    [23]

    Sun W J, Wu H W, Hu P, Zhou N, Chen X, Yang Y Q, Sheng Z Q 2023 Appl. Phys. Lett. 122 202201Google Scholar

    [24]

    Bliokh K Y, Nori F 2019 Phys. Rev. B 99 174310Google Scholar

    [25]

    Long Y, Zhang D M, Yang C W, Ge J M, Chen H, Ren J 2020 Nat. Commun. 11 4716Google Scholar

    [26]

    Weiner M, Ni X, Alu A, Khanikaev A B 2022 Nat. Commun. 13 6332Google Scholar

    [27]

    Cselyuszka N, Sečujski M, Engheta N, Crnojević-Bengin V 2016 New J. Phys. 18 103006Google Scholar

    [28]

    Zhu J, Chen Y Y, Zhu X F, Garcia-Vidal F J, Yin X B, Zhang W L, Zhang X 2013 Sci. Rep. 3 1728Google Scholar

    [29]

    Jia H, Lu M H, Ni X, Bao M, Li X D 2014 J. Appl. Phys. 116 124504Google Scholar

    [30]

    Ooi K, Okada T , Tanaka K 2011 Phys. Rev. B 84 115405

    [31]

    Xie P X, Sheng Z Q, Huang Z X, Hu P, Wu H W 2023 Appl. Phys. Lett. 122 222202Google Scholar

    [32]

    Long Y, Yang C W, Chen H, Ren J 2023 Phys. Rev. Appl. 19 064053Google Scholar

  • [1] Bai Yu, Zhang Zhen-Fang, Yang Hai-Bin, Cai Li, Yu Dian-Long. Metasurface acoustic liner of engine based on asymmetric absorber. Acta Physica Sinica, 2023, 72(5): 054301. doi: 10.7498/aps.72.20222011
    [2] Xu Qiang-Rong, Zhu Yang, Lin Kang, Shen Cheng, Lu Tian-Jian. Low-frequency sound insulation performance of novel membrane acoustic metamaterial with dynamic negative stiffness. Acta Physica Sinica, 2022, 71(21): 214301. doi: 10.7498/aps.71.20221058
    [3] Xu Qiang-Rong, Shen Cheng, Han Feng, Lu Tian-Jian. Broadband low-frequency sound insulation performance of quasi-zero stiffness local resonant acoustic metamaterial plate. Acta Physica Sinica, 2021, 70(24): 244302. doi: 10.7498/aps.70.20211203
    [4] Liu Shao-Gang, Zhao Yue-Chao, Zhao Dan. Bandgap and transmission spectrum characteristics of multilayered acoustic metamaterials with magnetorheological elastomer. Acta Physica Sinica, 2019, 68(23): 234301. doi: 10.7498/aps.68.20191334
    [5] He Zi-Hou, Zhao Jing-Bo, Yao Hong, Jiang Juan-Na, Chen Xin. Sound insulation performance of thin-film acoustic metamaterials based on piezoelectric materials. Acta Physica Sinica, 2019, 68(13): 134302. doi: 10.7498/aps.68.20190245
    [6] He Zi-Hou, Zhao Jing-Bo, Yao Hong, Chen Xin. Sound insulation performance of Helmholtz cavity with thin film bottom. Acta Physica Sinica, 2019, 68(21): 214302. doi: 10.7498/aps.68.20191131
    [7] Tian Yuan, Ge Hao, Lu Ming-Hui, Chen Yan-Feng. Research advances in acoustic metamaterials. Acta Physica Sinica, 2019, 68(19): 194301. doi: 10.7498/aps.68.20190850
    [8] Ding Chang-Lin, Dong Yi-Bao, Zhao Xiao-Peng. Research advances in acoustic metamaterials and metasurface. Acta Physica Sinica, 2018, 67(19): 194301. doi: 10.7498/aps.67.20180963
    [9] Yu Hang, Xu Xi-Fang, Niu Qian, Zhang Li-Fa. Phonon angular momentum and chiral phonons. Acta Physica Sinica, 2018, 67(7): 076302. doi: 10.7498/aps.67.20172407
    [10] Zheng Sheng-Jie, Xia Bai-Zhan, Liu Ting-Ting, Yu De-Jie. Subwavelength topological valley-spin states in the space-coiling acoustic metamaterials. Acta Physica Sinica, 2017, 66(22): 228101. doi: 10.7498/aps.66.228101
    [11] Cao Song-Hua, Wu Jiu-Hui, Wang Yu, Hou Ming-Ming, Li Jing. Studies on the mechanism of acoustic pulse train and full transmission. Acta Physica Sinica, 2016, 65(6): 064302. doi: 10.7498/aps.65.064302
    [12] Liu Jiao, Hou Zhi-Lin, Fu Xiu-Jun. Mechanism for local resonant acoustic metamaterial. Acta Physica Sinica, 2015, 64(15): 154302. doi: 10.7498/aps.64.154302
    [13] Peng Xiao-Fang, Chen Li-Qun, Luo Yong-Feng, Liu Lin-Hong, Wang Kai-Jun. Acoustic phonon transport and thermal conductance in quantum waveguide with abrupt quantum junctions modulated with double T-shapedquantum structure. Acta Physica Sinica, 2013, 62(5): 056805. doi: 10.7498/aps.62.056805
    [14] Shen Hui-Jie, Wen Ji-Hong, Yu Dian-Long, Cai Li, Wen Xi-Sen. Research on a cylindrical cloak with active acoustic metamaterial layers. Acta Physica Sinica, 2012, 61(13): 134303. doi: 10.7498/aps.61.134303
    [15] Peng Xiao-Fang, Wang Xin-Jun, Gong Zhi-Qiang, Chen Li-Qun. Acoustic phonon transport and thermal conductance in one-dimensional quantum waveguide modulated with quantum dots. Acta Physica Sinica, 2011, 60(12): 126802. doi: 10.7498/aps.60.126802
    [16] Ding Chang-Lin, Zhao Xiao-Peng. Audible sound metamaterial. Acta Physica Sinica, 2009, 58(9): 6351-6355. doi: 10.7498/aps.58.6351
    [17] Yao Ling-Jiang, Wang Ling-Ling. Characteristics of acoustic phonon transport and thermal conductance in quasi-one-dimensional quantum waveguides with semi-circular-arc cavity. Acta Physica Sinica, 2008, 57(5): 3100-3106. doi: 10.7498/aps.57.3100
    [18] He Meng-Dong, Gong Zhi-Qiang. Acoustic-phonon transmission in multilayer heterojunctions. Acta Physica Sinica, 2007, 56(3): 1415-1421. doi: 10.7498/aps.56.1415
    [19] LIU XIAO-HAN, HUANG DA-MING, WANG XING-JUN, ZHANG CHUN-HONG, ZHU HAI-JUN, JIANG ZUI-MIN, WANG XUN. RAMAN SPECTRA FROM ACOUSTIC PHONONS IN NEARLY PERIODIC SiGe/Si SUPERLATTICES. Acta Physica Sinica, 1997, 46(9): 1863-1872. doi: 10.7498/aps.46.1863
    [20] XU JUN, CHEN KUN-JI, HAN HE-XIANG, LI GUO-HUA, WANG ZHAO-PING. ZONE-FOLDED LA PHONONS IN AMORPHOUS SEMICONDUCTOR SUPERLATTICES. Acta Physica Sinica, 1992, 41(12): 1938-1942. doi: 10.7498/aps.41.1938
Metrics
  • Abstract views:  1357
  • PDF Downloads:  97
  • Cited By: 0
Publishing process
  • Received Date:  09 April 2024
  • Accepted Date:  28 May 2024
  • Available Online:  07 June 2024
  • Published Online:  20 July 2024

/

返回文章
返回