Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analysis of GAAFET’s transient heat transport process based on phonon hydrodynamic equations

Liu Zhe Wei Hao Cui Hai-Hang Sun Kai Sun Bo-Hua

Citation:

Analysis of GAAFET’s transient heat transport process based on phonon hydrodynamic equations

Liu Zhe, Wei Hao, Cui Hai-Hang, Sun Kai, Sun Bo-Hua
PDF
HTML
Get Citation
  • Compared to the classical Fourier’s law, the phonon hydrodynamic model has demonstrated significant advantages in describing ultrafast phonon heat transport at the nanoscale. The gate-all-around field-effect transistor (GAAFET) greatly optimizes its electrical performance through its three-dimensional channel design, but its nanoscale characteristics also lead to challenges such as self-heating and localized overheating. Therefore, it is of great significance to study the internal heat transport mechanism of GAAFET devices to obtain the thermal process and heat distribution characteristics. Based on this, this paper conducts theoretical and numerical simulation analyses on the phonon heat transfer characteristics within nanoscale GAAFET devices. Firstly, based on the phonon Boltzmann equation, the phonon hydrodynamic model and boundary conditions are rigorously derived, establishing a numerical solution method based on finite elements. For the novel GAAFET devices, the effects of factors such as surface roughness, channel length, channel radius, gate dielectric, and interface thermal resistance on their heat transfer characteristics are analyzed. The research results indicate that the larger the surface roughness, the smaller the channel length and the channel radius, the larger the interface thermal resistance leads to the higher hot spot peak temperature. The non-Fourier heat analysis method based on the phonon hydrodynamic model and temperature jump condition within the continuous medium framework constructed in this paper can accurately predict the non-Fourier phonon heat conduction process inside GAAFET and reveal the mechanisms of resistive scattering and phonon/interface scattering. This work provides important theoretical support for further optimizing the thermal reliability design of GAAFET, improving its thermal stability, and operational performance.
      Corresponding author: Sun Kai, sunkai1@ime.ac.cn ; Sun Bo-Hua, sunbohua@binn.cas.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62374173) and the Excellent Doctoral Dissertation Cultivation Fund of Xi’an University of Architecture and Technology, China (Grant No. 2023XYBPY006).
    [1]

    Liu S Q, Li Q H, Yang C, Yang J, Xu L, Xu L Q, Ma J C, Li Y, Fang S B, Wu B C, Dong J C, Yang J B, Lu J 2022 Phys. Rev. Appl. 18 054089Google Scholar

    [2]

    Yoon J S, Rim T, Kim J, Meyyappan M, Baek C K, Jeong Y H 2014 Appl. Phys. Lett. 105 102105Google Scholar

    [3]

    Zhang Q Z, Yin H X, Meng L K, Yao J X, Li J J, Wang G L, Li Y D, Wu Z H, Xiong W J, Yang H, Tu H L, Li J F, Zhao C, Wang W W, Ye T C 2018 IEEE Electron Device Lett. 39 464Google Scholar

    [4]

    Belkhiria M, Echouchene F, Jaba N, Bajahzar A, Belmabrouk H 2021 IEEE Trans. Electron Devices 68 954Google Scholar

    [5]

    Belkhiria M, Alyousef H A, Chehimi H, Aouaini F, Echouchene F 2022 Thin Solid Films 758 139423Google Scholar

    [6]

    Rezgui H, Mukherjee C, Wang Y, Deng M, Kumar A, Müller J, Larrieu G, Maneux C 2023 IEEE Trans. Electron Devices 70 6505Google Scholar

    [7]

    Myeong I, Son D, Kim H, Shin H 2019 IEEE Trans. Electron Devices 66 4631Google Scholar

    [8]

    Chhabria V A, Sapatnekar S S 2019 20th International Symposium on Quality Electronic Design (ISQED). pp235–240

    [9]

    Alvarez P T 2018 Thermal Transport in Semiconductors: First Principles and Phonon Hydrodynamics (1st Ed.) (Switzerland: Springer) pp41–71

    [10]

    Yang N, Zhang G, Li B W 2010 Nano Today 5 85Google Scholar

    [11]

    Guo Y Y, Wang M R 2016 J. Comput. Phys. 315 1Google Scholar

    [12]

    Ran X, Guo Y Y, Wang M R 2018 Int. J. Heat Mass Transfer 123 616Google Scholar

    [13]

    Zhang C, Guo Z L 2021 Int. J. Heat Mass Tranfer 181 121847Google Scholar

    [14]

    Cattaneo C 1948 Atti Sem. Mat. Fis. Univ. Modena 3 83

    [15]

    Vernotte P 1958 Comptes Rendus 246 3154

    [16]

    Tzou D Y 1995 J. Heat Transfer 117 8Google Scholar

    [17]

    Xu M T, Wang L Q 2005 Int. J. Heat Mass Transfer 48 5616Google Scholar

    [18]

    Chen G 2002 J. Heat Transfer 124 320Google Scholar

    [19]

    Cao B Y, Guo Z Y 2007 J. Appl. Phys. 102 053503Google Scholar

    [20]

    Dong Y, Cao B Y, Guo Z Y 2011 J. Appl. Phys. 110 063504Google Scholar

    [21]

    Guyer R A, Krumhansl J A 1966 Phys. Rev. 148 766Google Scholar

    [22]

    Guyer R A, Krumhansl J A 1966 Phys. Rev. 148 778Google Scholar

    [23]

    Alvarez F X, Jou D, Sellitto A 2009 J. Appl. Phys. 105 014317Google Scholar

    [24]

    Hua Y C, Cao B Y 2014 Int. J. Heat Mass Tranfer 78 755Google Scholar

    [25]

    Kaiser J, Feng T L, Maassen J, Wang X F, Ruan X L, Lundstrom M 2017 J. Appl. Phys. 121 044302Google Scholar

    [26]

    Guo Y Y, Wang M R 2018 Phys. Rev. B 97 035421Google Scholar

    [27]

    Beardo A, Hennessy M G, Sendra L, Camacho J, Myers T G, Bafaluy J, Alvarez F X 2020 Phys. Rev. B 101 075303Google Scholar

    [28]

    Rezgui H, Nasri F, Ali A B H, Guizani A A 2020 IEEE Trans. Electron Devices 68 10

    [29]

    Rezgui H, Nasri F, Ali A B H, Guizani A A 2021 Therm. Sci. Eng. Prog. 25 100938Google Scholar

    [30]

    Chen G 2005 Nanoscale Energy Transport and Conversion: a Parallel Treatment of Electrons, Molecules, Phonons, and Photons (New York: Oxford University Press) pp227–275

    [31]

    Peierls R E 1996 Quantum Theory of Solids (Oxford: Clarendon Press) pp45–52

    [32]

    Chen N X, Sun B H 2017 Chin. Phys. Lett. 34 020502Google Scholar

    [33]

    Aissa M F B, Nasri F, Belmabrouk H 2017 IEEE Trans. Electron Devices 64 5236Google Scholar

    [34]

    Sellitto A, Carlomagno I, Jou D 2015 Proc. R. Soc. A 471 20150376Google Scholar

    [35]

    Beardo A, Calvo-Schwarzwälder M, Camacho J, Myers T, Torres P, Sendra L, Alvarez F, Bafaluy J 2019 Phys. Rev. Appl. 11 034003Google Scholar

    [36]

    Zhang Z M 2020 Nano/microscale Heat Transfer (2nd Ed.) (Switzerland: Springer) p235

    [37]

    Mahajan S S, Subbarayan G, Sammakia B G 2011 IEEE Trans. Compon. Packag. Manuf. Technol. 1 1132Google Scholar

    [38]

    Chen G F, Hu B Y, Jiang Z L, Wang Z L, Tang D W 2023 Int. J. Heat Mass Tranfer 202 123676Google Scholar

    [39]

    Lai J H, Su Y L, Bu J H, Li B H, Li B, Zhang G H 2020 IEEE Trans. Electron Devices 67 4060Google Scholar

    [40]

    The Chinese Academy of Sciences 2022 Thermal Management of Electronic Devices p2 (in Chinses) [中国科学院 2022 电子设备热管理 (北京: 科学出版社) 第2页]

    The Chinese Academy of Sciences 2022 Thermal Management of Electronic Devices p2 (in Chinses)

    [41]

    程哲 2021 物理学报 70 236502Google Scholar

    Cheng Z 2021 Acta Phys. Sin. 70 236502Google Scholar

    [42]

    Jeong J, Choi S J, Shim J, Kim E, Kim S K, Kim B H, Kim J P, Suh Y, Beak W J, Geum D, Koh Y, Kim D, Kim S 2023 2023 International Electron Devices Meeting (IEDM) pp1–4

  • 图 1  (a)二维稳态声子导热问题的无量纲温度分布; (b)薄膜法向瞬态导热问题的无量纲温度分布. 符号为文献[11]的LBM结果, 实线为当前声子水动力学方程的模拟结果

    Figure 1.  (a) Dimensionless temperature distribution of the two-dimensional steady-state phonon thermal conductivity problem; (b) dimensionless temperature distribution of the normal transient thermal conductivity problem of the thin film. The symbols represent the LBM results in Ref.[11], and the solid lines represent the simulation results of current phonon hydrodynamics equation.

    图 2  (a)三维GAAFET的结构示意图; (b)二维轴对称结构

    Figure 2.  (a) Schematic diagram of three-dimensional GAAFET structure; (b) two-dimensional axisymmetric structure.

    图 3  $ t=30\; {\rm{ps}} $时刻GAAFET器件的表面温度分布 (a) $ p = $$ 0 $; (b) $ p = 0.1 $; (c) $ p = 1 $

    Figure 3.  Temperature distribution of GAAFET devices at $ t=30\; {\rm{ps}} $: (a) $ p = 0 $; (b) $ p = 0.1 $; (c) $ p = 1 $.

    图 4  $ t=50\; {\rm{ps}} $时刻GAAFET器件的等温线图 (a) $ p = $$ 0.2 $; (b) $ p = 0.4 $; (c) $ p = 0.6 $

    Figure 4.  2D Isotherm cloud maps of GAAFET devices at $ t=50\; {\rm{ps}} $: (a) $ p = 0.2 $; (b) $ p = 0.4 $; (c) $ p = 0.6 $.

    图 5  不同沟道长度的GAAFET器件的温度和热流密度变化 (a) 硅/氧化物界面中点处温度峰值的时间演变; (b) $ t= $$ 200\; {\rm{ps}} $时刻沿r方向中线上的径向热流密度分布

    Figure 5.  Temperature and heat flux changes of GAAFET devices with different channel lengths: (a) Time evolution of temperature peak at the midpoint of the silicon/oxide interface; (b) radial heat flux distribution along the centerline in the r-direction at $ t=200\; {\rm{ps}} $.

    图 6  不同沟道半径的GAAFET器件的温度和热流密度变化 (a)硅/氧化物界面中点处温度峰值的时间演变; (b) $ t= $$ 50\; {\rm{ps}} $时刻沿氧化物-半导体界面沟道长度上的热流密度分布

    Figure 6.  Temperature and heat flux variations of GAAFET devices with different channel radius. (a) Time evolution of peak temperature at the midpoint of the silicon/oxide interface; (b) the heat flux distribution along the channel length of the oxide semiconductor interface at time $ t=50\; {\rm{ps}} $.

    图 7  不同栅极电介质材料的GAAFET器件的温度云图 (a) Si-$ {\rm{SiO}}_2 $; (b) Si-$ {\rm{Al}}_2{\rm{O}}_3 $; (c) Si-$ {\rm{HfO}}_2 $

    Figure 7.  Temperature distribution of GAAFET devices with different gate dielectric materials: (a) Si-$ {\rm{SiO}}_2 $; (b) Si-$ {\rm{Al}}_2{\rm{O}}_3 $; (c) Si-$ {\rm{HfO}}_2 $.

    图 8  $ t=100\; {\rm{ps}} $时不同热阻GAAFET沿r方向中线上的(a)温升和(b)径向热流密度变化

    Figure 8.  (a) Temperature rise and (b) radial heat flux variation along the centerline of different thermal resistances GAAFET in the r-direction at $ t=100\; {\rm{ps}} $.

    表 1  Si和介电材料(SiO2, Al2O3, HfO2)的热物性参数[28,37]

    Table 1.  Thermal physical property parameters of Si and dielectric materials (SiO2, Al2O3, HfO2)[28,37]

    相关参数 Si $ {\rm{SiO}}_2 $ $ {\rm{HfO}}_2 $ $ {\rm{Al}}_2{\rm{O}}_3 $
    $ {v_{\rm{g}}}/({\rm{m{\cdot} s^{-1}}}) $ 3000 5900 4800 8800
    $ \kappa /({\rm{W{\cdot} m^{-1}{\cdot} K^{-1}}}) $ 150 1.4 1.0 1.5
    $C/{\rm{(10^6 \;J{\cdot} }}{{\rm{m}}^{\rm{-3}}}{\rm{{\cdot} K^{-1})}} $ 1.50 1.75 2.71 2.65
    $ \varLambda /{\rm{nm}} $ 100 0.4 0.23 0.19
    $ {\tau_{\rm{R}}} = \varLambda /v/{\rm{ps}} $ 33.3 0.068 0.048 0.02
    $ {R_{\rm{TBR}}}/{\rm{({m^2} {\cdot} K{\cdot} GW^{-1})}} $ 0.1 9.03 6.92
    DownLoad: CSV
  • [1]

    Liu S Q, Li Q H, Yang C, Yang J, Xu L, Xu L Q, Ma J C, Li Y, Fang S B, Wu B C, Dong J C, Yang J B, Lu J 2022 Phys. Rev. Appl. 18 054089Google Scholar

    [2]

    Yoon J S, Rim T, Kim J, Meyyappan M, Baek C K, Jeong Y H 2014 Appl. Phys. Lett. 105 102105Google Scholar

    [3]

    Zhang Q Z, Yin H X, Meng L K, Yao J X, Li J J, Wang G L, Li Y D, Wu Z H, Xiong W J, Yang H, Tu H L, Li J F, Zhao C, Wang W W, Ye T C 2018 IEEE Electron Device Lett. 39 464Google Scholar

    [4]

    Belkhiria M, Echouchene F, Jaba N, Bajahzar A, Belmabrouk H 2021 IEEE Trans. Electron Devices 68 954Google Scholar

    [5]

    Belkhiria M, Alyousef H A, Chehimi H, Aouaini F, Echouchene F 2022 Thin Solid Films 758 139423Google Scholar

    [6]

    Rezgui H, Mukherjee C, Wang Y, Deng M, Kumar A, Müller J, Larrieu G, Maneux C 2023 IEEE Trans. Electron Devices 70 6505Google Scholar

    [7]

    Myeong I, Son D, Kim H, Shin H 2019 IEEE Trans. Electron Devices 66 4631Google Scholar

    [8]

    Chhabria V A, Sapatnekar S S 2019 20th International Symposium on Quality Electronic Design (ISQED). pp235–240

    [9]

    Alvarez P T 2018 Thermal Transport in Semiconductors: First Principles and Phonon Hydrodynamics (1st Ed.) (Switzerland: Springer) pp41–71

    [10]

    Yang N, Zhang G, Li B W 2010 Nano Today 5 85Google Scholar

    [11]

    Guo Y Y, Wang M R 2016 J. Comput. Phys. 315 1Google Scholar

    [12]

    Ran X, Guo Y Y, Wang M R 2018 Int. J. Heat Mass Transfer 123 616Google Scholar

    [13]

    Zhang C, Guo Z L 2021 Int. J. Heat Mass Tranfer 181 121847Google Scholar

    [14]

    Cattaneo C 1948 Atti Sem. Mat. Fis. Univ. Modena 3 83

    [15]

    Vernotte P 1958 Comptes Rendus 246 3154

    [16]

    Tzou D Y 1995 J. Heat Transfer 117 8Google Scholar

    [17]

    Xu M T, Wang L Q 2005 Int. J. Heat Mass Transfer 48 5616Google Scholar

    [18]

    Chen G 2002 J. Heat Transfer 124 320Google Scholar

    [19]

    Cao B Y, Guo Z Y 2007 J. Appl. Phys. 102 053503Google Scholar

    [20]

    Dong Y, Cao B Y, Guo Z Y 2011 J. Appl. Phys. 110 063504Google Scholar

    [21]

    Guyer R A, Krumhansl J A 1966 Phys. Rev. 148 766Google Scholar

    [22]

    Guyer R A, Krumhansl J A 1966 Phys. Rev. 148 778Google Scholar

    [23]

    Alvarez F X, Jou D, Sellitto A 2009 J. Appl. Phys. 105 014317Google Scholar

    [24]

    Hua Y C, Cao B Y 2014 Int. J. Heat Mass Tranfer 78 755Google Scholar

    [25]

    Kaiser J, Feng T L, Maassen J, Wang X F, Ruan X L, Lundstrom M 2017 J. Appl. Phys. 121 044302Google Scholar

    [26]

    Guo Y Y, Wang M R 2018 Phys. Rev. B 97 035421Google Scholar

    [27]

    Beardo A, Hennessy M G, Sendra L, Camacho J, Myers T G, Bafaluy J, Alvarez F X 2020 Phys. Rev. B 101 075303Google Scholar

    [28]

    Rezgui H, Nasri F, Ali A B H, Guizani A A 2020 IEEE Trans. Electron Devices 68 10

    [29]

    Rezgui H, Nasri F, Ali A B H, Guizani A A 2021 Therm. Sci. Eng. Prog. 25 100938Google Scholar

    [30]

    Chen G 2005 Nanoscale Energy Transport and Conversion: a Parallel Treatment of Electrons, Molecules, Phonons, and Photons (New York: Oxford University Press) pp227–275

    [31]

    Peierls R E 1996 Quantum Theory of Solids (Oxford: Clarendon Press) pp45–52

    [32]

    Chen N X, Sun B H 2017 Chin. Phys. Lett. 34 020502Google Scholar

    [33]

    Aissa M F B, Nasri F, Belmabrouk H 2017 IEEE Trans. Electron Devices 64 5236Google Scholar

    [34]

    Sellitto A, Carlomagno I, Jou D 2015 Proc. R. Soc. A 471 20150376Google Scholar

    [35]

    Beardo A, Calvo-Schwarzwälder M, Camacho J, Myers T, Torres P, Sendra L, Alvarez F, Bafaluy J 2019 Phys. Rev. Appl. 11 034003Google Scholar

    [36]

    Zhang Z M 2020 Nano/microscale Heat Transfer (2nd Ed.) (Switzerland: Springer) p235

    [37]

    Mahajan S S, Subbarayan G, Sammakia B G 2011 IEEE Trans. Compon. Packag. Manuf. Technol. 1 1132Google Scholar

    [38]

    Chen G F, Hu B Y, Jiang Z L, Wang Z L, Tang D W 2023 Int. J. Heat Mass Tranfer 202 123676Google Scholar

    [39]

    Lai J H, Su Y L, Bu J H, Li B H, Li B, Zhang G H 2020 IEEE Trans. Electron Devices 67 4060Google Scholar

    [40]

    The Chinese Academy of Sciences 2022 Thermal Management of Electronic Devices p2 (in Chinses) [中国科学院 2022 电子设备热管理 (北京: 科学出版社) 第2页]

    The Chinese Academy of Sciences 2022 Thermal Management of Electronic Devices p2 (in Chinses)

    [41]

    程哲 2021 物理学报 70 236502Google Scholar

    Cheng Z 2021 Acta Phys. Sin. 70 236502Google Scholar

    [42]

    Jeong J, Choi S J, Shim J, Kim E, Kim S K, Kim B H, Kim J P, Suh Y, Beak W J, Geum D, Koh Y, Kim D, Kim S 2023 2023 International Electron Devices Meeting (IEDM) pp1–4

  • [1] Sang Li-Xia, Li Zhi-Kang. Molecular dynamics simulation of thermal transport properties of phonons at interface of Au-TiO2 photoelectrode. Acta Physica Sinica, 2024, 73(10): 103105. doi: 10.7498/aps.73.20240026
    [2] Chen Xing-Yu, Zhou Xin, Bai Xing, Yu Zhan, Wang Yu-Jie, Li Xin-Jia, Liu Yang, Sun Ming-Ze. Equivalence analysis of Fourier ghost imaging and sinusoidal ghost imaging. Acta Physica Sinica, 2023, 72(14): 144202. doi: 10.7498/aps.72.20222317
    [3] Wang Yu-Hao, Liu Jian-Guo, Xu Liang, Cheng Xiao-Xiao, Deng Ya-Song, Shen Xian-Chun, Sun Yong-Feng, Xu Han-Yang. Qualitative analysis of gas detection limit of Fourier infrared spectroscopy. Acta Physica Sinica, 2022, 71(9): 093201. doi: 10.7498/aps.71.20212366
    [4] Liu Nai-Zhang, Yao Ruo-He, Geng Kui-Wei. Gate capacitance model of AlGaN/GaN high electron mobility transistor. Acta Physica Sinica, 2021, 70(21): 217301. doi: 10.7498/aps.70.20210700
    [5] Zhang Shu-He, Shao Meng, Zhang Sheng-Zhao, Zhou Jin-Hua. Light rays in Fourier domain. Acta Physica Sinica, 2019, 68(21): 214202. doi: 10.7498/aps.68.20190839
    [6] Bao Li-Ping, Li Wen-Yan, Wu Li-Qun. Singularly perturbed solutions of a class of non-Fourier temperature field distribution. Acta Physica Sinica, 2019, 68(20): 204401. doi: 10.7498/aps.68.20190144
    [7] Yin Ling-Kang, Xu Shun, Seongmin Jeong, Yongseok Jho, Wang Jian-Jun, Zhou Xin. Vapor-liquid coexisting morphology of all-atom water model through generalized isothermal isobaric ensemble molecular dynamics simulation. Acta Physica Sinica, 2017, 66(13): 136102. doi: 10.7498/aps.66.136102
    [8] Li Hong-Qi. Applications of random balance design Fourier amplitude sensitivity test and extended Fourier amplitude sensitivity test in the parameter sensitivity analysis of land surface process model. Acta Physica Sinica, 2015, 64(6): 069201. doi: 10.7498/aps.64.069201
    [9] Yu Shu-Hai, Dong Lei, Liu Xin-Yue, Ling Jian-Yong. Analysis on reconstruction of virtual images of Fourier telescopy. Acta Physica Sinica, 2015, 64(18): 184205. doi: 10.7498/aps.64.184205
    [10] Liu Yong-Di, Li Hong, Zhang Bo, Zheng Qiong-Lin, You Xiao-Jie. Spectrum calculation of chaotic SPWM signals based on double fourier series. Acta Physica Sinica, 2014, 63(7): 070503. doi: 10.7498/aps.63.070503
    [11] Su Li-Na, Gu Xiao-Feng, Qin Hua, Yan Da-Wei. Analytical I-V model and numerical analysis of single electron transistor. Acta Physica Sinica, 2013, 62(7): 077301. doi: 10.7498/aps.62.077301
    [12] Qiang Lei, Yao Ruo-He. Distributions of the threshold voltage and the temperature in the channel of amorphous silicon thin film transistors. Acta Physica Sinica, 2012, 61(8): 087303. doi: 10.7498/aps.61.087303
    [13] Gu Jiang, Wang Qiang, Lu Hong. Current collapse effect, interfacial thermal resistance and work temperature for AlGaN/GaN HEMTs. Acta Physica Sinica, 2011, 60(7): 077107. doi: 10.7498/aps.60.077107
    [14] Huang Su-Juan, Wang Shuo-Zhong, Yu Ying-Jie. Computer generated holography based on Fourier transform using conjugate symmetric extension. Acta Physica Sinica, 2009, 58(2): 952-958. doi: 10.7498/aps.58.952
    [15] Zhao Lei, Sui Zhan, Zhu Qi-Hua, Zhang Ying, Zuo Yan-Lei. Improvement and precision analysis of the split-step Fourier method in solving the general nonlinear Schr?dinger equation. Acta Physica Sinica, 2009, 58(7): 4731-4737. doi: 10.7498/aps.58.4731
    [16] Duan He, Zheng Yu-Feng, Zhang Xiao-Gang, Sun Yan-Fei, Dong You-Zhong. Hydrothermal synthesis of iron pyrite (FeS22) crystalpowder and the rmal-kinetic study on crystal growth. Acta Physica Sinica, 2005, 54(4): 1659-1664. doi: 10.7498/aps.54.1659
    [17] XU YUN, ZHANG JIAN-XIA, DU SHI-PEI. THE JUMP STOCHASTICITY CHARACTERISTICS OF NONLI-NER FUNCTION IN THE DYNAMIC SYSTEM. Acta Physica Sinica, 1991, 40(1): 33-38. doi: 10.7498/aps.40.33
    [18] XING XIU-SAN. THE PRODUCTION KINETICS OF THERMAL DEFECTS IN CRYSTALS. Acta Physica Sinica, 1988, 37(4): 694-697. doi: 10.7498/aps.37.694
    [19] CAI LU-ZHONG, ZHANG YOU-WEN. FOURIER ANALYSIS OF RAINBOW HOLOGRAPHIC IMAGING. Acta Physica Sinica, 1982, 31(8): 1020-1029. doi: 10.7498/aps.31.1020
    [20] CHENG CHUNG-CHIH. ANALYSIS OF JUNCTION TRANSISTOR CONVERTERS. Acta Physica Sinica, 1959, 15(10): 525-534. doi: 10.7498/aps.15.525
Metrics
  • Abstract views:  2277
  • PDF Downloads:  40
  • Cited By: 0
Publishing process
  • Received Date:  09 April 2024
  • Accepted Date:  28 May 2024
  • Available Online:  18 June 2024
  • Published Online:  20 July 2024

/

返回文章
返回