Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Equivalence analysis of Fourier ghost imaging and sinusoidal ghost imaging

Chen Xing-Yu Zhou Xin Bai Xing Yu Zhan Wang Yu-Jie Li Xin-Jia Liu Yang Sun Ming-Ze

Citation:

Equivalence analysis of Fourier ghost imaging and sinusoidal ghost imaging

Chen Xing-Yu, Zhou Xin, Bai Xing, Yu Zhan, Wang Yu-Jie, Li Xin-Jia, Liu Yang, Sun Ming-Ze
PDF
HTML
Get Citation
  • Ghost imaging, also known as correlation imaging, is one of the research hotspots in the imaging field. Various ghost imaging systems with different basic principles and implementation architectures have emerged, but the correlation between them is weak, showing a diversified trend and recent research progress is slower than before. Studying the essence of ghost imaging theory is a feasible direction to explore the unknown field of ghost imaging. Through research, we find that Fourier ghost imaging and sinusoidal ghost imaging are based on the same type of orthogonal sine speckle and cosine speckle, which have a very high similarity. At the same time, sinusoidal ghost imaging method can give a complete spatial description and spatial imaging process, so we guess that these two imaging methods can reveal the relationship between spatial imaging and Fourier domain imaging. On this basis, it is proved that Fourier ghost imaging and sinusoidal ghost imaging are equivalent in principle. The former can be realized by n-step phase shift, while the latter can be equivalent to two-step phase shift. Considering that both of these methods use sine and cosine fringes as structural speckles. By combining the spatial decomposition characteristics of sine speckle imaging, the relationship between structural speckle imaging and traditional ghost imaging is analyzed, and the principles of some methods constructed on the basis of these two methods are explained. The simulation results applied to edge detection show that the combination of the two methods can simultaneously obtain the better anti-noise performance of Fourier ghost imaging and the higher imaging efficiency of sinusoidal ghost imaging. Since sinusoidal ghost imaging relates the characteristics of image spatial decomposition to traditional ghost imaging, and their expression is equivalent to the expression of orthogonal Fourier transform domain of Fourier ghost imaging, the association of ghost imaging methods in Fourier domain and even in the whole orthogonal transform domain and spatial domain can be generalized. This conclusion may provide a way for associating different kinds of ghost imaging, and it can be hoped that more and more new types of ghost imaging systems will be developed.
      Corresponding author: Zhou Xin, zhoxn@21cn.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62275080, 61475104) and the Natural Science Foundation of Sichuan Province, China (Grant No. 2022NSFSC0565).
    [1]

    Welsh S S, Edgar M P, Jonathan P, Sun B Q, Padgett M J 2013 Conference on Emerging Digital Micromirror Device Based Systems and Applications V San Francisco, CA, Feb. 05–06, 2013 p1

    [2]

    Shapiro J H 2008 Phys. Rev. A 78 061802Google Scholar

    [3]

    Erkmen B I, Shapiro J H 2010 Adv. Opt. Photonics 2 405Google Scholar

    [4]

    Pittman T B, Shih Y H, Strekalov D V, Sergienko A V 1995 Phys. Rev. A 52 R3429Google Scholar

    [5]

    Bennink R S, Bentley S J, Boyd R W 2002 Phys. Rev. Lett. 89 113601Google Scholar

    [6]

    Cao D Z, Xiong J, Wang K 2005 Phys. Rev. A 71 013801Google Scholar

    [7]

    Edgar M P, Gibson G M, Bowman R W, Sun B, Radwell N, Mitchell K J, Welsh S S, Padgett M J 2015 Sci. Rep. 5 10669Google Scholar

    [8]

    Chan W L, Charan K, Takhar D, Kelly K F, Baraniuk R G, Mittleman D M 2008 Appl. Phys. Lett. 93 121105Google Scholar

    [9]

    Tajahuerce E, Duran V, Clemente P, Irles E, Soldevila F, Andres P, Lancis J 2014 Opt. Express 22 16945Google Scholar

    [10]

    Ferri F, Magatti D, Lugiato L A, Gatti A 2010 Phys. Rev. Lett. 104 253603Google Scholar

    [11]

    Wu L A, Luo K H 2011 S. N. Bose National Centre for Basic Sciences Silver Jubilee Symposium on 75 Years of Quantum Entanglement-Foundations and Information Theoretic Applications Kolkata, INDIA, Jan 06–10, 2011 p223

    [12]

    Sun B Q, Welsh S S, Edgar M P, Shapiro J H, Padgett M J 2012 Opt. Express 20 16892Google Scholar

    [13]

    Zhang Z B, Ma X, Zhong J G 2015 Nat. Commun. 6 6225Google Scholar

    [14]

    Khamoushi S M M, Nosrati Y, Tavassoli S H 2015 Opt. Lett. 40 3452Google Scholar

    [15]

    Radwell N, Mitchell K J, Gibson G M, Edgar M P, Bowman R, Padgett M J 2014 Optica 1 285Google Scholar

    [16]

    Ortega A, Frossard P, Kovacevic J, Moura J M F, Vandergheynst P 2018 P. Ieee. 106 808Google Scholar

    [17]

    Bromberg Y, Katz O, Silberberg Y 2009 Phys. Rev. A 79 053840Google Scholar

    [18]

    Bian L H, Suo J L, Hu X M, Chen F, Dai Q H 2016 J. Optics-UK. 18 085704Google Scholar

    [19]

    郑一瑶 2021 硕士学位论文 (西安: 西安理工大学)

    Zheng Y Y 2021 M. S. Thesis (Xian: Xi’an University of Technology) (in Chinese)

    [20]

    Khamoushi S M M, Tavassoli S H 2019 J. Optics-UK. 21 025702Google Scholar

    [21]

    Zhang Z B, Wang X Y, Zheng G A, Zhong J G 2017 Sci. Rep. 7 12029Google Scholar

    [22]

    Meng W W, Shi D F, Huang J, Yuan K E, Wang Y J, Fan C Y 2019 Opt. Express. 27 31490Google Scholar

    [23]

    Rousset F, Ducros N, Farina A, Valentini G, D'Andrea C, Peyrin F 2017 IEEE T. Comput. Imag. 3 36

    [24]

    Liu B L, Yang Z H, Liu X, Wu L A 2017 J. Mod. Optic. 64 259Google Scholar

    [25]

    Wang L, Zhao S M 2016 Photonics Res. 4 240Google Scholar

  • 图 1  鬼成像系统原理图

    Figure 1.  Schematic diagram of ghost imaging system.

    图 2  傅里叶正逆变换可实现图像分解与合成

    Figure 2.  Fourier forward inverse transform can realize image decomposition and synthesis.

    图 3  四步相移法获取傅里叶系数

    Figure 3.  Fourier coefficients obtained by the four-step phase shift method.

    图 4  不同测量次数下的灰度FSI和SGI重建图像

    Figure 4.  Reconstructed images of grayscale FSI and SGI under different measurement times.

    图 5  灰度FSI和SGI在不同测量次数下的PSNR值

    Figure 5.  PSNR value of grayscale FSI and SGI under different measurement times.

    图 6  灰度FSI和SGI在叠加不同强度随机噪声下的重建结果, 随机噪声幅值的浮动范围分别为图像低频部分模拟测量值最大浮动范围的0, 0.0075, 0.015, 0.03, 0.075, 0.12倍 (a) 两种方法在不同噪声水平下的最终重建图像; (b) 最终重建图像的PSNR值; (c) 最终图像与无噪声图像的PSNR差值

    Figure 6.  The reconstruction results of grayscale FSI and SGI under the superposition of random noise with different intensities, the floating range of random noise amplitude is 0, 0.0075, 0.015, 0.03, 0.075, 0.12 times of the maximum floating range of the simulated measurement value for the low frequency part of the image, respectively: (a) The final reconstructed image of the two methods under different noise levels; (b) PSNR value of the final reconstructed image; (c) PSNR difference between the final image and the noiseless image.

    图 7  不同采样数下二值图SCU对应3种不同方法的边缘检测结果

    Figure 7.  Edge detection results of binary graph SCU under different sampling numbers correspond to three different methods.

    图 8  三种方法在不同采样数下的边缘检测PSNR值

    Figure 8.  PSNR values of the edge detection for the three methods under different sampling numbers.

    图 9  三种方法在叠加不同强度随机噪声下的重建结果, 随机噪声幅值的浮动范围分别为图像低频部分模拟测量值最大浮动范围的0, 0.0075, 0.015, 0.03, 0.075, 0.12倍 (a) 3种方法在不同噪声水平下的最终重建图像; (b) 最终重建图像的PSNR值; (c) 最终图像与无噪声图像的PSNR差值

    Figure 9.  Reconstruction results of the three methods under different intensities of random noise. The floating range of random noise amplitude is 0, 0.0075, 0.015, 0.03, 0.075, 0.12 times of the maximum floating range of the simulated measurement value for the low frequency part of the image: (a) Final reconstructed images of the three methods under different noise levels; (b) PSNR value of the final reconstructed image; (c) PSNR difference between the final image and the noiseless image.

  • [1]

    Welsh S S, Edgar M P, Jonathan P, Sun B Q, Padgett M J 2013 Conference on Emerging Digital Micromirror Device Based Systems and Applications V San Francisco, CA, Feb. 05–06, 2013 p1

    [2]

    Shapiro J H 2008 Phys. Rev. A 78 061802Google Scholar

    [3]

    Erkmen B I, Shapiro J H 2010 Adv. Opt. Photonics 2 405Google Scholar

    [4]

    Pittman T B, Shih Y H, Strekalov D V, Sergienko A V 1995 Phys. Rev. A 52 R3429Google Scholar

    [5]

    Bennink R S, Bentley S J, Boyd R W 2002 Phys. Rev. Lett. 89 113601Google Scholar

    [6]

    Cao D Z, Xiong J, Wang K 2005 Phys. Rev. A 71 013801Google Scholar

    [7]

    Edgar M P, Gibson G M, Bowman R W, Sun B, Radwell N, Mitchell K J, Welsh S S, Padgett M J 2015 Sci. Rep. 5 10669Google Scholar

    [8]

    Chan W L, Charan K, Takhar D, Kelly K F, Baraniuk R G, Mittleman D M 2008 Appl. Phys. Lett. 93 121105Google Scholar

    [9]

    Tajahuerce E, Duran V, Clemente P, Irles E, Soldevila F, Andres P, Lancis J 2014 Opt. Express 22 16945Google Scholar

    [10]

    Ferri F, Magatti D, Lugiato L A, Gatti A 2010 Phys. Rev. Lett. 104 253603Google Scholar

    [11]

    Wu L A, Luo K H 2011 S. N. Bose National Centre for Basic Sciences Silver Jubilee Symposium on 75 Years of Quantum Entanglement-Foundations and Information Theoretic Applications Kolkata, INDIA, Jan 06–10, 2011 p223

    [12]

    Sun B Q, Welsh S S, Edgar M P, Shapiro J H, Padgett M J 2012 Opt. Express 20 16892Google Scholar

    [13]

    Zhang Z B, Ma X, Zhong J G 2015 Nat. Commun. 6 6225Google Scholar

    [14]

    Khamoushi S M M, Nosrati Y, Tavassoli S H 2015 Opt. Lett. 40 3452Google Scholar

    [15]

    Radwell N, Mitchell K J, Gibson G M, Edgar M P, Bowman R, Padgett M J 2014 Optica 1 285Google Scholar

    [16]

    Ortega A, Frossard P, Kovacevic J, Moura J M F, Vandergheynst P 2018 P. Ieee. 106 808Google Scholar

    [17]

    Bromberg Y, Katz O, Silberberg Y 2009 Phys. Rev. A 79 053840Google Scholar

    [18]

    Bian L H, Suo J L, Hu X M, Chen F, Dai Q H 2016 J. Optics-UK. 18 085704Google Scholar

    [19]

    郑一瑶 2021 硕士学位论文 (西安: 西安理工大学)

    Zheng Y Y 2021 M. S. Thesis (Xian: Xi’an University of Technology) (in Chinese)

    [20]

    Khamoushi S M M, Tavassoli S H 2019 J. Optics-UK. 21 025702Google Scholar

    [21]

    Zhang Z B, Wang X Y, Zheng G A, Zhong J G 2017 Sci. Rep. 7 12029Google Scholar

    [22]

    Meng W W, Shi D F, Huang J, Yuan K E, Wang Y J, Fan C Y 2019 Opt. Express. 27 31490Google Scholar

    [23]

    Rousset F, Ducros N, Farina A, Valentini G, D'Andrea C, Peyrin F 2017 IEEE T. Comput. Imag. 3 36

    [24]

    Liu B L, Yang Z H, Liu X, Wu L A 2017 J. Mod. Optic. 64 259Google Scholar

    [25]

    Wang L, Zhao S M 2016 Photonics Res. 4 240Google Scholar

  • [1] Li Wen-Wen, Hui Ning-Ju, Li Cun-Xia, Liu Yang-He, Fang Yan, Li Ling-Qing, Wang Yan-Long, Tang Yuan-He. A comparative study of three methods to detect the upper atmospheric wind speed by DASH. Acta Physica Sinica, 2023, 72(24): 240601. doi: 10.7498/aps.72.20231292
    [2] Wang Zi-Shuo, Liu Lei, Liu Chen-Bo, Liu Ke, Zhong Zhi, Shan Ming-Guang. Fast phase unwrapping using digital differentiation-integration method. Acta Physica Sinica, 2023, 72(18): 184201. doi: 10.7498/aps.72.20230473
    [3] Yang Jun, Wu Hao, Luo Kun-Hao, Guo Jin-Chuan, Zong Fang-Ke. Suppression of artifacts in X-ray phase-contrast images retrieved by Fourier transform. Acta Physica Sinica, 2021, 70(10): 104101. doi: 10.7498/aps.70.20201781
    [4] Zhang Rui-Xue, Li Hong-Guo, Li Zong-Guo. Temporal imaging based on first-order field correlation. Acta Physica Sinica, 2019, 68(10): 104202. doi: 10.7498/aps.68.20190184
    [5] Wang Zhen, Du Yan-Jun, Ding Yan-Jun, Peng Zhi-Min. Wavelength-scanned cavity ring down spectroscopy based on Fourier transform. Acta Physica Sinica, 2019, 68(20): 204204. doi: 10.7498/aps.68.20191062
    [6] Zhou Yang,  Zhang Hong-Wei,  Zhong Fei,  Guo Shu-Xu. Iterative denoising of ghost imaging based on adaptive threshold method. Acta Physica Sinica, 2018, 67(24): 244201. doi: 10.7498/aps.67.20181240
    [7] Yu Hui, Zhang Rui, Li Ke-Wu, Xue Rui, Wang Zhi-Bin. Principles and simulation of spectropolarimetirc imaging technique based on static dual intensity-modulated Fourier transform. Acta Physica Sinica, 2017, 66(5): 054201. doi: 10.7498/aps.66.054201
    [8] Zhong Ya-Jun, Liu Jiao, Liang Wen-Qiang, Zhao Sheng-Mei. Multiple speckle patterns differential compressive ghost imaging. Acta Physica Sinica, 2015, 64(1): 014202. doi: 10.7498/aps.64.014202
    [9] Chen Yong, Zhao Hui-Chang, Chen Si, Zhang Shu-Ning. Imaging algorithm for missile-borne SAR using the fractional Fourier transform. Acta Physica Sinica, 2014, 63(11): 118403. doi: 10.7498/aps.63.118403
    [10] Li Long-Zhen, Yao Xu-Ri, Liu Xue-Feng, Yu Wen-Kai, Zhai Guang-Jie. Super-resolution ghost imaging via compressed sensing. Acta Physica Sinica, 2014, 63(22): 224201. doi: 10.7498/aps.63.224201
    [11] Yin Zeng-Qian, Wu Chen, Gong Wan-Yu, Gong Zhi-Ke, Wang Yong-Jie. Voigt profile function and its maximum. Acta Physica Sinica, 2013, 62(12): 123301. doi: 10.7498/aps.62.123301
    [12] Wang Hua-Ying, Yu Meng-Jie, Liu Fei-Fei, Jiang Ya-Nan, Song Xiu-Fa, Gao Ya-Fei. Generalized linear reconstructing algorithm based on homomorphic signal processed in digital holographic microscopy. Acta Physica Sinica, 2013, 62(23): 234207. doi: 10.7498/aps.62.234207
    [13] Liu Xue-Feng, Yao Xu-Ri, Li Ming-Fei, Yu Wen-Kai, Chen Xi-Hao, Sun Zhi-Bin, Wu Ling-An, Zhai Guang-Jie. The role of intensity fluctuations in thermal ghost imaging. Acta Physica Sinica, 2013, 62(18): 184205. doi: 10.7498/aps.62.184205
    [14] Zhang Shu-Na, Luo Zhen-Yue, Shen Wei-Dong, Liu Xu, Zhang Yue-Guang. Measurement of the group refractive index of bulk material using white-light spectral interferometry. Acta Physica Sinica, 2011, 60(1): 014221. doi: 10.7498/aps.60.014221
    [15] Zhang Ji-Quan, Zhang Yan-Hui, Zhou Hui, Jia Zheng-Mao, Lin Sheng-Lu. Diffractive effect of quantum spectra in the annular billiard. Acta Physica Sinica, 2009, 58(9): 5965-5969. doi: 10.7498/aps.58.5965
    [16] Xiangli Bin, Yuan Yan, Lü Qun-Bo. Spectral transfer function of the Fourier transform spectral imager. Acta Physica Sinica, 2009, 58(8): 5399-5405. doi: 10.7498/aps.58.5399
    [17] Zhao Bao-Yin, Lü Bai-Da. A new synthesis method for synthesizing on-axis flat-topped beams by using a defocusing telescope system. Acta Physica Sinica, 2008, 57(5): 2919-2924. doi: 10.7498/aps.57.2919
    [18] Liu Bin, Jin Wei-Qi, Dong Li-Quan. The diffraction effect in a thermal imaging system with a front wire grid. Acta Physica Sinica, 2008, 57(9): 5578-5583. doi: 10.7498/aps.57.5578
    [19] Luo Zhi-Yong, Yang Li-Feng, Chen Yun-Chang. Phase-shift algorithm research based on multiple-beam interference principle. Acta Physica Sinica, 2005, 54(7): 3051-3057. doi: 10.7498/aps.54.3051
    [20] JIN PENG, PAN SHI-HONG, LIANG JI-BEN. FOURIER TRANSFORMATION STUDY OF THE FRANZ-KELDYSH OSCILLATION IN SIN+ GaAs STRUCTURES. Acta Physica Sinica, 2000, 49(9): 1821-1828. doi: 10.7498/aps.49.1821
Metrics
  • Abstract views:  2951
  • PDF Downloads:  76
  • Cited By: 0
Publishing process
  • Received Date:  05 December 2022
  • Accepted Date:  06 May 2023
  • Available Online:  25 May 2023
  • Published Online:  20 July 2023

/

返回文章
返回