-
Based on the lattice Boltzmann method, this paper conducts a three-dimensional numerical simulation of the motion behavior of bubbles in complex porous media channels in a large density ratio gas-liquid system. The Eötvös number (Eo), contact angle (θ) and Reynolds number (Re) are systematically discussed. The influence on bubble dynamics reveals the coupling effect of the three in bubble velocity, morphological evolution and stagnation phenomenon. The study found that the results showed that an increase in the contact angle would reduce the bubble velocity and intensify the velocity fluctuations, making the bubbles tend to flatten, while an increase in the Eo number significantly suppressed the influence of the contact angle, stabilized the bubble velocity, and made its shape close to that of a bullet. Head shape. When the contact angle is large (θ>90°) and the Eo number is small (Eo<10), the adhesion force is significantly enhanced and the bubbles will stagnate inside the porous medium. Re number and contact angle are in a competitive relationship in the generation of resistance, and have mutually reinforcing effects on the average velocity of bubbles and interface evolution. The larger contact angle makes the deformation of the bubble tail intensify and becomes unstable, and as the Re number further increases, the tail tentacles are more likely to break, forming residual bubbles. The article also found that the coupling between Eo number and Re number significantly affects bubble motion behavior and morphological evolution. Under the conditions of high Eo number (Eo≥25) and high Re number (Re≥14), the bubble velocity increases with the increase of Eo number. rises, and the trend becomes more significant as the Re number increases; while under the conditions of low Eo number (Eo<25) and low Re number (Re<14), the speed change pattern is completely opposite. This phenomenon is due to the high instability of bubble morphology under high Eo number and high Re number conditions, which affects the buoyancy and speed performance. The research results provide important guidance for optimizing the flow behavior of bubbles in porous media.
-
Keywords:
- Lattice Boltzmann Method /
- gas-liquid two-phase flow /
- porous media /
- three-dimensional numerical simulation
-
[1] Lichtschlag A, Haeckel M, Olierook D, Peel K, Flohr A, Pearce C R, Marieni C, James R H, Connelly D P 2021Int. J. Greenh. Gas Control 109 103352
[2] Zhang M A, Wang J Q, Wu R, Feng Z, Zhan M X, Xu X, Chi Z H 2023Acta Phys. Sin. 72 164701(张沐安, 王进卿, 吴睿, 冯致, 詹明秀, 徐旭, 池作和2023物理学报72 164701)
[3] Ajayi T, Gomes J S, Bera A 2019Petrol. Sci. 16 1028
[4] Liu H B, Xu H, Pan L M, Zhong D H, Liu Y 2019Int. J. Hydrogen Energy 44 22780
[5] Wang J K, Li H, Peng Y F, Li X Y, Zhang X Y 2022Acta Phys. Sin. 71 15(王季康, 李华, 彭宇飞, 李晓燕, 张新宇2022物理学报71 15)
[6] Zhang D, Li Y, Yuan H 2023Desalination 566 116902
[7] Haris S, Qiu X, Klammler H, Mohamed M M A 2020Groundw. Sustain. Dev. 11 100463
[8] Li Y F, Yang G Q, Yu S L, Mo J K, Li K, Xie Z Q, Ding L, Wang W T, Zhang F Y 2021Electrochim. Acta 370 137751
[9] Wang C Y, Beckermann C, Fan C 1994Numer. Heat Transf., Part A: Appl. 26 375
[10] Wang H, Lou Q, Liu G, Li L 2022Int. J. Therm. Sci. 178 107554
[11] Zhang S, Lou Q 2024Acta Phys. Sin. 73 256(张森, 娄钦2024物理学报73 256)
[12] Roosevelt S E, Corapcioglu M Y 1998Water Resour. Res. 34 1131
[13] Corapcioglu M Y, Cihan A, Drazenovic M 2004Water Resour. Res. 40 4
[14] Ma Y, Kong X Z, Scheuermann A, Galindo-Torres S A, Bringemeier D, Li L 2015Water Resour. Res. 51 4359
[15] Ghasemian S, Ahmadzadegan A, Chatzis I 2019Transp. Porous Media 129 811
[16] Liu N, Ju B, Yang Y, Brantson E T, Wang J, Tian Y 2019J. Petrol. Sci. Eng. 180 396
[17] Qian Y H, D'Humières D, Lallemand P 1992Europhys. Lett. 17 479
[18] Guo Z L, Zheng C G 2009Theory and Applications of Lattice Boltzmann Method (Beijing: Science Press) p42(in Chinese)
[19] Shi J, Ma Q, Chen Z 2019Microgravity Sci. Technol. 31 207
[20] Sattari E, Zanous S P, Farhadi M, Mohamad A 2020J. Power Sources 454 227929
[21] Inamuro T, Ogata T, Ogino F 2004Future Gener. Comput. Syst. 20 959
[22] Yu K, Yong Y, Yang C 2020Processes 8 1608
[23] Fakhari A, Bolster D 2017J. Comput. Phys. 334 620
[24] Alizadeh M, Seyyedi S M, Rahni M T, Ganji D D 2017J. Mol. Liq. 236 151
[25] Chen G Q, Huang X, Zhang A, Wang S P, Li T 2019Phys. Fluids 31 9
[26] Zhang A, Guo Z, Wang Q, Xiong S 2019Phys. Fluids 31 6
[27] Zhang A, Su D, Li C, Zhang Y, Jiang B, Pan F 2022Phys. Fluids 34 4
[28] Gunstensen A K, Rothman D H, Zaleski S, Zanetti G 1991Phys. Rev. A 43 4320
[29] Shan X, Chen H 1993Phys. Rev. E 47 1815
[30] Shan X, Chen H 1994Phys. Rev. E 49 2941
[31] Swift M R, Osborn W R, Yeomans J M 1995Phys. Rev. Lett. 75 830
[32] Swift M R, Orlandini E, Osborn W R, Yeomans J M 1996Phys. Rev. E 54 5041
[33] He X, Luo L S 1997Phys. Rev. E 55 6333
[34] He X, Luo L S 1997Phys. Rev. E 56 6811
[35] Liang H, Xu J, Chen J, Wang H, Chai Z, Shi B 2018Phys. Rev. E 97 033309
[36] Chiu P H, Lin Y T 2011J. Comput. Phys. 230 185
[37] Unverdi S O, Tryggvason G 1992J. Comput. Phys. 100 25
[38] Wei Y, Li Y, Wang Z, Yang H, Zhu Z, Qian Y, Luo K H 2022Phys. Rev. E 105 015103
[39] Jeon D H, Kim S, Kim M, Lee C, Cho H S 2023J. Power Sources 553 232322
[40] Yi T, Zhang W, Qiu Y, Lei G, Yu Y, Wu J, Yang G 2023Int. J. Multiphase Flow 169 104601
[41] Lou Q, Tang S, Wang H Y 2021J. Comput. Phys. 38 289(娄钦, 汤升, 王浩原2021计算物理 38 289)
Metrics
- Abstract views: 95
- PDF Downloads: 1
- Cited By: 0