-
A new incompressible gas-liquid two-phase flow model for non-Newtonian power-law fluid is proposed based on an incompressible lattice Boltzmann model. And the fundamental physical mechanism of Newtonian fluid displacing non-Newtonian power-law fluid liquid in porous medium is studied by using the proposed model. The effects of capillary number Ca, dynamic viscosity ratio M, surface wettability θ, porous medium geometry, and power law index n on the displacement process are investigated. The comprehensive results show that with the increase of capillary number, the displacement process turns faster, the fingering phenomenon becomes more obvious and the displacement efficiency decreases. However, for different values of power-law index n, the effects of the Ca on the displacement process have some differences. Specially, the decrease rate of displacement efficiency becomes slow if the displaced fluid is shear thickening fluid as compared with that if the displaced fluid is shear thinning fluid. On the other hand, the displacement efficiency decreases as dynamic viscosity ratio M increases. And the effect of the viscosity ratio on the displacement process becomes more obvious for the low value of the power-law index n. Moreover, the effect of the surface wettability of the porous medium on the displacement process is also related to the size of the power-law index. With the increase of the contact angle of the porous medium, the fingering phenomenon turns less obvious, and the displacement efficiency increases. However, with the increase of power-law index n, the influence of the contact angle on the displacement process decreases. Besides, the displacement processes with different geometric types of the porous media are also studied in the work. The results show that comparing with the case of porous medium denoted by circle shape and square shape, the fingering phenomenon obtained by the case of triangular shape is most obvious, and the displacement efficiency is lowest.
-
Keywords:
- power-law two-phase fluid /
- lattice Boltzmann model /
- immiscible displacement /
- porous media
[1] Santvoort J V, Golombok M 2018 J. Pet. Sci. Eng. 167 28Google Scholar
[2] Fang T M, Wang M H, Gao Y, Zhang Y N, Yan Y G, Zhang J 2019 Chem. Eng. Sci. 197 204Google Scholar
[3] Xu X F, Zhang J, Liu F X, Wang X J, Wei W, Liu Z J 2017 Int. J. Multiphase Flow. 95 84Google Scholar
[4] Du W, Fu T T, Duan Y F, Zhu C Y, Ma Y G, Li H Z 2018 Chem. Eng. Sci. 176 66Google Scholar
[5] Fu T T, Ma Y G, Li H Z 2015 Chem. Eng. Process. 97 38Google Scholar
[6] Salehi M S, Esfidani M T, Afshin H, Firoozabadi B 2018 Exp. Therm. Fluid Sci. 94 148Google Scholar
[7] Sontti S G, Atta A 2017 Chem. Eng. J. 330 245Google Scholar
[8] 娄钦, 李涛, 杨茉 2018 物理学报 67 234701Google Scholar
Lou Q, Li T, Yang M 2018 Acta Phys. Sin. 67 234701Google Scholar
[9] 臧晨强, 娄钦 2017 物理学报 66 134701Google Scholar
Zang C Q, Lou Q 2017 Acta Phys. Sin. 66 134701Google Scholar
[10] Lou Q, Guo Z L, Shi B C 2012 Europhys. Lett. 99 64005Google Scholar
[11] Lou Q, Guo Z L 2015 Phys. Rev. E 91 013302Google Scholar
[12] 娄钦, 李涛, 李凌 2018 上海理工大学学报 40 13
Lou Q, Li T, Li L 2018 J. Univ. Shanghai Sci. Technol. 40 13
[13] 谢驰宇, 张建影, 王沫然 2016 计算物理 33 147Google Scholar
Xie C Y, Zhang J Y, Wang M R 2016 Chin. J. Computat. Phys. 33 147Google Scholar
[14] Swift M R, Osborn W R, Yeomans J M 1995 Phys. Rev. Lett. 75 830Google Scholar
[15] Shi Y, Tang G H 2014 Comput. Math. Appl. 68 1279Google Scholar
[16] Fakhari A, Rahimian M H 2010 Phys. Rev. E 81 036707Google Scholar
[17] Shi Y, Tang G H 2016 J. Non-Newtonian Fluid Mech. 229 86Google Scholar
[18] Ba Y, Wang N N, Liu H H, Li Q, He G Q 2018 Phys. Rev. E 97 033307Google Scholar
[19] Halliday I, Law R, Care C M, Hollis A 2006 Phys. Rev. E 73 056708Google Scholar
[20] Halliday I, Hollis A P, Care C M 2007 Phys. Rev. E 76 026708Google Scholar
[21] 闵琪, 段远源, 王晓东, 吴莘馨 2013 热科学与技术 12 335
Min Q, Duan Y Y, Wang X D, Wu X X 2013 J. Therm. Sci. Technol. 12 335
[22] Shan X W, Chen H D 1994 Phys. Rev. E 49 2941Google Scholar
[23] Shan X W, Chen H D 1993 Phys. Rev. E 47 1815Google Scholar
[24] Nourgaliev R R, Dinh T N, Theofanous T G, Joseph D 2003 Int. J. Multiphase Flow. 29 117Google Scholar
[25] Huang H B, Sukop M, Lu X Y 2015 Multiphase Lattice Boltzmann Methods: Theory and Application (USA: WILEY Blackwell) pp7−10
[26] Yu Z, Fan L S 2009 J. Comput. Phys. 228 6456Google Scholar
[27] He X Y, Chen S Y, Zhang R Y 1999 J. Comput. Phys. 152 642Google Scholar
[28] Fakhari A, Bolster D 2017 J. Comput. Phys. 334 620Google Scholar
[29] Fakhari A, Rahimian M H 2011 Comput. Fluids 40 156Google Scholar
[30] Lou Q, Guo Z L, Shi B C 2013 Phys. Rev. E 87 063301Google Scholar
[31] Sadeghi R, Shadloo M S 2017 Numer. Heat Transfer Part A 71 560Google Scholar
[32] Kano Y, Sato T 2017 Energy Procedia 114 3385Google Scholar
[33] Ye F, Di Q F, Wang W C, Chen F, Chen H J, Hua S 2018 J. Appl. Math. Mech. 39 513Google Scholar
[34] Huang H B, Huang J J, Lu X Y 2014 J. Comput. Phys. 269 386Google Scholar
[35] Chao J H, Mei R W, Singh R, Shyy W 2011 Int. J. Numer. Methods Fluids 66 622Google Scholar
[36] Chen Y P, Deng Z L 2017 J. Fluid Mech. 819 401Google Scholar
[37] Fu Y H, Bai L, Jin Y, Cheng Y 2017 Phys. Fluids 29 032003Google Scholar
[38] 郭照立, 郑楚光 2008 格子Boltzmann方法的原理及应用 (北京: 科学出版社) 第244页
Guo Z L, Zheng C G 2008 Theory and Applications of Lattice Boltzmann Method (Beijing: Science Press) p244 (in Chinese)
[39] Guo Z L, Zheng C G, Shi B C 2011 Phys. Rev. E 83 036707Google Scholar
[40] Davies A R, Summers J L, Wilson M C T 2006 Int. J. Comput. Fluid. D 20 415Google Scholar
[41] Shi Y, Tang G H 2015 Commun. Comput. Phys. 17 1056Google Scholar
[42] Ansarinasab J, Jamialahmadi M 2017 J. Pet. Sci. Eng. 156 748Google Scholar
[43] Basirat F, Yang Z B, Niemi A 2017 Adv. Water Resour. 109 181
[44] Zheng X L, Mahabadi N, Yun T S, Jang J 2017 J. Geophys. Res.: Solid Earth 122 1634Google Scholar
[45] Xu Z Y, Liu H H, Valocchi A J 2017 Water Resources Res. 53 3770Google Scholar
[46] Soulaine C, Roman S, Kovscek A, Tchelepi H A 2018 J. Fluid Mech. 855 616Google Scholar
[47] 黄海波 2009 第六届全国流体力学青年研讨会 中国杭州 2009年10月10日 第27页
Huang H B 2009 The 6th National Youth Workshop on Fluid Mechanics Hangzhou, China October 10, 2009 p27 (in Chinese)
[48] Shiri Y, HassaniH,Nazari M, Sharifi M 2018 Mol. Simul. 44 708Google Scholar
[49] Liu H H, ValocchiAJ, Kang Q J, Werth C 2013 Transp. Porous Media 99 555Google Scholar
[50] Dong B, YanY Y, Li W Z, Song Y C 2010 Comput. Fluids 39 768Google Scholar
[51] Ferer M, Anna S L,Tortora P, Kadambi J R, Oliver M, Bromhal G S, Smith D H 2011 Transp. Porous Media 86 243Google Scholar
[52] Dong B, YanY Y, Li W Z, Song Y C 2011 J. Bionic. Eng. 7 267Google Scholar
-
图 2 不同初始静态接触角
${\theta _{{\rm{eq}}}}$ 时得到的稳态接触角$\theta $ (a)${\theta _{{\rm{eq}}}}{\rm{ = }}{60^{\rm{o}}}$ ; (b)${\theta _{{\rm{eq}}}}{\rm{ = }}{90^{\rm{o}}};$ (c)${\theta _{{\rm{eq}}}}={120^{\rm{o}}}$ Figure 2. Steady state contact angles
$\theta $ obtained with the different values of static contact angles${\theta _{{\rm{eq}}}}$ : (a)${\theta _{{\rm{eq}}}}{\rm{ = }}{60^{\rm{o}}}$ ; (b)${\theta _{{\rm{eq}}}}{\rm{ = }}{90^{\rm{o}}};$ (c)${\theta _{{\rm{eq}}}}{\rm{ = }}{120^{\rm{o}}}$ .图 5 不同Ca数对应的液滴形态 (a) Ca = 0.06370; (b) Ca = 0.06835; (c) Ca = 0.07300; (d) Ca = 0.07750; (e) Ca = 0.0820; (f) Ca = 0.08650; (g) Ca = 0.0910
Figure 5. Droplet morphology obtained under various values of Ca: (a) Ca = 0.06370; (b) Ca = 0.06835; (c) Ca = 0.07300; (d) Ca = 0.07750; (e) Ca = 0.0820; (f) Ca = 0.08650; (g) Ca = 0.0910.
图 13 不同的润湿性角度
$\theta $ 下, 被驱替液为剪切变稀、牛顿与剪切变稠流体时得到的指进形态图 (a)−(c)$\theta = {45^{\circ}}$ ; (d)− (f)$\theta = {60^{\circ}}$ ; (g)−(i)$\theta = {120^{\circ}}$ ; (j)−(l)$\theta = {135^{\circ}}$ Figure 13. Final finger patterns obtained under different values of contact angles
$\theta $ for shear thinning, Newtonian and shear thickening fluids: (a)−(c)$\theta = {45^{\circ}}$ ; (d)-(f)$\theta = {60^{\circ}}$ ; (g)−(i)$\theta = {120^{\circ}}$ ; (j)−(l)$\theta = {135^{\circ}}$ .图 15 不同的障碍物几何类型, 被驱替液为剪切变稀、牛顿与剪切变稠流体时驱得到的指进形态图 (a)−(c) n = 0.4; (d)− (f) n = 0.7; (g)−(i) n = 1.0; (j)−(l) n = 1.3, (m)−(o) n = 1.6
Figure 15. Final finger patterns obtained under different geometric type for shear thinning, Newtonian and shear thickening fluids: (a)− (c) n = 0.4; (d)−(f) n = 0.7; (g)−(i) n = 1.0; (j)−(l) n = 1.3; (m)−(o) n = 1.6.
-
[1] Santvoort J V, Golombok M 2018 J. Pet. Sci. Eng. 167 28Google Scholar
[2] Fang T M, Wang M H, Gao Y, Zhang Y N, Yan Y G, Zhang J 2019 Chem. Eng. Sci. 197 204Google Scholar
[3] Xu X F, Zhang J, Liu F X, Wang X J, Wei W, Liu Z J 2017 Int. J. Multiphase Flow. 95 84Google Scholar
[4] Du W, Fu T T, Duan Y F, Zhu C Y, Ma Y G, Li H Z 2018 Chem. Eng. Sci. 176 66Google Scholar
[5] Fu T T, Ma Y G, Li H Z 2015 Chem. Eng. Process. 97 38Google Scholar
[6] Salehi M S, Esfidani M T, Afshin H, Firoozabadi B 2018 Exp. Therm. Fluid Sci. 94 148Google Scholar
[7] Sontti S G, Atta A 2017 Chem. Eng. J. 330 245Google Scholar
[8] 娄钦, 李涛, 杨茉 2018 物理学报 67 234701Google Scholar
Lou Q, Li T, Yang M 2018 Acta Phys. Sin. 67 234701Google Scholar
[9] 臧晨强, 娄钦 2017 物理学报 66 134701Google Scholar
Zang C Q, Lou Q 2017 Acta Phys. Sin. 66 134701Google Scholar
[10] Lou Q, Guo Z L, Shi B C 2012 Europhys. Lett. 99 64005Google Scholar
[11] Lou Q, Guo Z L 2015 Phys. Rev. E 91 013302Google Scholar
[12] 娄钦, 李涛, 李凌 2018 上海理工大学学报 40 13
Lou Q, Li T, Li L 2018 J. Univ. Shanghai Sci. Technol. 40 13
[13] 谢驰宇, 张建影, 王沫然 2016 计算物理 33 147Google Scholar
Xie C Y, Zhang J Y, Wang M R 2016 Chin. J. Computat. Phys. 33 147Google Scholar
[14] Swift M R, Osborn W R, Yeomans J M 1995 Phys. Rev. Lett. 75 830Google Scholar
[15] Shi Y, Tang G H 2014 Comput. Math. Appl. 68 1279Google Scholar
[16] Fakhari A, Rahimian M H 2010 Phys. Rev. E 81 036707Google Scholar
[17] Shi Y, Tang G H 2016 J. Non-Newtonian Fluid Mech. 229 86Google Scholar
[18] Ba Y, Wang N N, Liu H H, Li Q, He G Q 2018 Phys. Rev. E 97 033307Google Scholar
[19] Halliday I, Law R, Care C M, Hollis A 2006 Phys. Rev. E 73 056708Google Scholar
[20] Halliday I, Hollis A P, Care C M 2007 Phys. Rev. E 76 026708Google Scholar
[21] 闵琪, 段远源, 王晓东, 吴莘馨 2013 热科学与技术 12 335
Min Q, Duan Y Y, Wang X D, Wu X X 2013 J. Therm. Sci. Technol. 12 335
[22] Shan X W, Chen H D 1994 Phys. Rev. E 49 2941Google Scholar
[23] Shan X W, Chen H D 1993 Phys. Rev. E 47 1815Google Scholar
[24] Nourgaliev R R, Dinh T N, Theofanous T G, Joseph D 2003 Int. J. Multiphase Flow. 29 117Google Scholar
[25] Huang H B, Sukop M, Lu X Y 2015 Multiphase Lattice Boltzmann Methods: Theory and Application (USA: WILEY Blackwell) pp7−10
[26] Yu Z, Fan L S 2009 J. Comput. Phys. 228 6456Google Scholar
[27] He X Y, Chen S Y, Zhang R Y 1999 J. Comput. Phys. 152 642Google Scholar
[28] Fakhari A, Bolster D 2017 J. Comput. Phys. 334 620Google Scholar
[29] Fakhari A, Rahimian M H 2011 Comput. Fluids 40 156Google Scholar
[30] Lou Q, Guo Z L, Shi B C 2013 Phys. Rev. E 87 063301Google Scholar
[31] Sadeghi R, Shadloo M S 2017 Numer. Heat Transfer Part A 71 560Google Scholar
[32] Kano Y, Sato T 2017 Energy Procedia 114 3385Google Scholar
[33] Ye F, Di Q F, Wang W C, Chen F, Chen H J, Hua S 2018 J. Appl. Math. Mech. 39 513Google Scholar
[34] Huang H B, Huang J J, Lu X Y 2014 J. Comput. Phys. 269 386Google Scholar
[35] Chao J H, Mei R W, Singh R, Shyy W 2011 Int. J. Numer. Methods Fluids 66 622Google Scholar
[36] Chen Y P, Deng Z L 2017 J. Fluid Mech. 819 401Google Scholar
[37] Fu Y H, Bai L, Jin Y, Cheng Y 2017 Phys. Fluids 29 032003Google Scholar
[38] 郭照立, 郑楚光 2008 格子Boltzmann方法的原理及应用 (北京: 科学出版社) 第244页
Guo Z L, Zheng C G 2008 Theory and Applications of Lattice Boltzmann Method (Beijing: Science Press) p244 (in Chinese)
[39] Guo Z L, Zheng C G, Shi B C 2011 Phys. Rev. E 83 036707Google Scholar
[40] Davies A R, Summers J L, Wilson M C T 2006 Int. J. Comput. Fluid. D 20 415Google Scholar
[41] Shi Y, Tang G H 2015 Commun. Comput. Phys. 17 1056Google Scholar
[42] Ansarinasab J, Jamialahmadi M 2017 J. Pet. Sci. Eng. 156 748Google Scholar
[43] Basirat F, Yang Z B, Niemi A 2017 Adv. Water Resour. 109 181
[44] Zheng X L, Mahabadi N, Yun T S, Jang J 2017 J. Geophys. Res.: Solid Earth 122 1634Google Scholar
[45] Xu Z Y, Liu H H, Valocchi A J 2017 Water Resources Res. 53 3770Google Scholar
[46] Soulaine C, Roman S, Kovscek A, Tchelepi H A 2018 J. Fluid Mech. 855 616Google Scholar
[47] 黄海波 2009 第六届全国流体力学青年研讨会 中国杭州 2009年10月10日 第27页
Huang H B 2009 The 6th National Youth Workshop on Fluid Mechanics Hangzhou, China October 10, 2009 p27 (in Chinese)
[48] Shiri Y, HassaniH,Nazari M, Sharifi M 2018 Mol. Simul. 44 708Google Scholar
[49] Liu H H, ValocchiAJ, Kang Q J, Werth C 2013 Transp. Porous Media 99 555Google Scholar
[50] Dong B, YanY Y, Li W Z, Song Y C 2010 Comput. Fluids 39 768Google Scholar
[51] Ferer M, Anna S L,Tortora P, Kadambi J R, Oliver M, Bromhal G S, Smith D H 2011 Transp. Porous Media 86 243Google Scholar
[52] Dong B, YanY Y, Li W Z, Song Y C 2011 J. Bionic. Eng. 7 267Google Scholar
Catalog
Metrics
- Abstract views: 10597
- PDF Downloads: 125
- Cited By: 0