Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Lattice Boltzmann model of gas-liquid two-phase flow of incomprssible power-law fluid and its application in the displacement problem of porous media

Lou Qin Huang Yi-Fan Li Ling

Citation:

Lattice Boltzmann model of gas-liquid two-phase flow of incomprssible power-law fluid and its application in the displacement problem of porous media

Lou Qin, Huang Yi-Fan, Li Ling
PDF
HTML
Get Citation
  • A new incompressible gas-liquid two-phase flow model for non-Newtonian power-law fluid is proposed based on an incompressible lattice Boltzmann model. And the fundamental physical mechanism of Newtonian fluid displacing non-Newtonian power-law fluid liquid in porous medium is studied by using the proposed model. The effects of capillary number Ca, dynamic viscosity ratio M, surface wettability θ, porous medium geometry, and power law index n on the displacement process are investigated. The comprehensive results show that with the increase of capillary number, the displacement process turns faster, the fingering phenomenon becomes more obvious and the displacement efficiency decreases. However, for different values of power-law index n, the effects of the Ca on the displacement process have some differences. Specially, the decrease rate of displacement efficiency becomes slow if the displaced fluid is shear thickening fluid as compared with that if the displaced fluid is shear thinning fluid. On the other hand, the displacement efficiency decreases as dynamic viscosity ratio M increases. And the effect of the viscosity ratio on the displacement process becomes more obvious for the low value of the power-law index n. Moreover, the effect of the surface wettability of the porous medium on the displacement process is also related to the size of the power-law index. With the increase of the contact angle of the porous medium, the fingering phenomenon turns less obvious, and the displacement efficiency increases. However, with the increase of power-law index n, the influence of the contact angle on the displacement process decreases. Besides, the displacement processes with different geometric types of the porous media are also studied in the work. The results show that comparing with the case of porous medium denoted by circle shape and square shape, the fingering phenomenon obtained by the case of triangular shape is most obvious, and the displacement efficiency is lowest.
      Corresponding author: Lou Qin, louqin560916@163.com
    • Funds: Project supported by the Shanghai Natural Science Foundation, China (Grant No. 19ZR1435700) and the National Natural Science Foundation of China (Grant No. 51736007)
    [1]

    Santvoort J V, Golombok M 2018 J. Pet. Sci. Eng. 167 28Google Scholar

    [2]

    Fang T M, Wang M H, Gao Y, Zhang Y N, Yan Y G, Zhang J 2019 Chem. Eng. Sci. 197 204Google Scholar

    [3]

    Xu X F, Zhang J, Liu F X, Wang X J, Wei W, Liu Z J 2017 Int. J. Multiphase Flow. 95 84Google Scholar

    [4]

    Du W, Fu T T, Duan Y F, Zhu C Y, Ma Y G, Li H Z 2018 Chem. Eng. Sci. 176 66Google Scholar

    [5]

    Fu T T, Ma Y G, Li H Z 2015 Chem. Eng. Process. 97 38Google Scholar

    [6]

    Salehi M S, Esfidani M T, Afshin H, Firoozabadi B 2018 Exp. Therm. Fluid Sci. 94 148Google Scholar

    [7]

    Sontti S G, Atta A 2017 Chem. Eng. J. 330 245Google Scholar

    [8]

    娄钦, 李涛, 杨茉 2018 物理学报 67 234701Google Scholar

    Lou Q, Li T, Yang M 2018 Acta Phys. Sin. 67 234701Google Scholar

    [9]

    臧晨强, 娄钦 2017 物理学报 66 134701Google Scholar

    Zang C Q, Lou Q 2017 Acta Phys. Sin. 66 134701Google Scholar

    [10]

    Lou Q, Guo Z L, Shi B C 2012 Europhys. Lett. 99 64005Google Scholar

    [11]

    Lou Q, Guo Z L 2015 Phys. Rev. E 91 013302Google Scholar

    [12]

    娄钦, 李涛, 李凌 2018 上海理工大学学报 40 13

    Lou Q, Li T, Li L 2018 J. Univ. Shanghai Sci. Technol. 40 13

    [13]

    谢驰宇, 张建影, 王沫然 2016 计算物理 33 147Google Scholar

    Xie C Y, Zhang J Y, Wang M R 2016 Chin. J. Computat. Phys. 33 147Google Scholar

    [14]

    Swift M R, Osborn W R, Yeomans J M 1995 Phys. Rev. Lett. 75 830Google Scholar

    [15]

    Shi Y, Tang G H 2014 Comput. Math. Appl. 68 1279Google Scholar

    [16]

    Fakhari A, Rahimian M H 2010 Phys. Rev. E 81 036707Google Scholar

    [17]

    Shi Y, Tang G H 2016 J. Non-Newtonian Fluid Mech. 229 86Google Scholar

    [18]

    Ba Y, Wang N N, Liu H H, Li Q, He G Q 2018 Phys. Rev. E 97 033307Google Scholar

    [19]

    Halliday I, Law R, Care C M, Hollis A 2006 Phys. Rev. E 73 056708Google Scholar

    [20]

    Halliday I, Hollis A P, Care C M 2007 Phys. Rev. E 76 026708Google Scholar

    [21]

    闵琪, 段远源, 王晓东, 吴莘馨 2013 热科学与技术 12 335

    Min Q, Duan Y Y, Wang X D, Wu X X 2013 J. Therm. Sci. Technol. 12 335

    [22]

    Shan X W, Chen H D 1994 Phys. Rev. E 49 2941Google Scholar

    [23]

    Shan X W, Chen H D 1993 Phys. Rev. E 47 1815Google Scholar

    [24]

    Nourgaliev R R, Dinh T N, Theofanous T G, Joseph D 2003 Int. J. Multiphase Flow. 29 117Google Scholar

    [25]

    Huang H B, Sukop M, Lu X Y 2015 Multiphase Lattice Boltzmann Methods: Theory and Application (USA: WILEY Blackwell) pp7−10

    [26]

    Yu Z, Fan L S 2009 J. Comput. Phys. 228 6456Google Scholar

    [27]

    He X Y, Chen S Y, Zhang R Y 1999 J. Comput. Phys. 152 642Google Scholar

    [28]

    Fakhari A, Bolster D 2017 J. Comput. Phys. 334 620Google Scholar

    [29]

    Fakhari A, Rahimian M H 2011 Comput. Fluids 40 156Google Scholar

    [30]

    Lou Q, Guo Z L, Shi B C 2013 Phys. Rev. E 87 063301Google Scholar

    [31]

    Sadeghi R, Shadloo M S 2017 Numer. Heat Transfer Part A 71 560Google Scholar

    [32]

    Kano Y, Sato T 2017 Energy Procedia 114 3385Google Scholar

    [33]

    Ye F, Di Q F, Wang W C, Chen F, Chen H J, Hua S 2018 J. Appl. Math. Mech. 39 513Google Scholar

    [34]

    Huang H B, Huang J J, Lu X Y 2014 J. Comput. Phys. 269 386Google Scholar

    [35]

    Chao J H, Mei R W, Singh R, Shyy W 2011 Int. J. Numer. Methods Fluids 66 622Google Scholar

    [36]

    Chen Y P, Deng Z L 2017 J. Fluid Mech. 819 401Google Scholar

    [37]

    Fu Y H, Bai L, Jin Y, Cheng Y 2017 Phys. Fluids 29 032003Google Scholar

    [38]

    郭照立, 郑楚光 2008 格子Boltzmann方法的原理及应用 (北京: 科学出版社) 第244页

    Guo Z L, Zheng C G 2008 Theory and Applications of Lattice Boltzmann Method (Beijing: Science Press) p244 (in Chinese)

    [39]

    Guo Z L, Zheng C G, Shi B C 2011 Phys. Rev. E 83 036707Google Scholar

    [40]

    Davies A R, Summers J L, Wilson M C T 2006 Int. J. Comput. Fluid. D 20 415Google Scholar

    [41]

    Shi Y, Tang G H 2015 Commun. Comput. Phys. 17 1056Google Scholar

    [42]

    Ansarinasab J, Jamialahmadi M 2017 J. Pet. Sci. Eng. 156 748Google Scholar

    [43]

    Basirat F, Yang Z B, Niemi A 2017 Adv. Water Resour. 109 181

    [44]

    Zheng X L, Mahabadi N, Yun T S, Jang J 2017 J. Geophys. Res.: Solid Earth 122 1634Google Scholar

    [45]

    Xu Z Y, Liu H H, Valocchi A J 2017 Water Resources Res. 53 3770Google Scholar

    [46]

    Soulaine C, Roman S, Kovscek A, Tchelepi H A 2018 J. Fluid Mech. 855 616Google Scholar

    [47]

    黄海波 2009 第六届全国流体力学青年研讨会 中国杭州 2009年10月10日 第27页

    Huang H B 2009 The 6th National Youth Workshop on Fluid Mechanics Hangzhou, China October 10, 2009 p27 (in Chinese)

    [48]

    Shiri Y, HassaniH,Nazari M, Sharifi M 2018 Mol. Simul. 44 708Google Scholar

    [49]

    Liu H H, ValocchiAJ, Kang Q J, Werth C 2013 Transp. Porous Media 99 555Google Scholar

    [50]

    Dong B, YanY Y, Li W Z, Song Y C 2010 Comput. Fluids 39 768Google Scholar

    [51]

    Ferer M, Anna S L,Tortora P, Kadambi J R, Oliver M, Bromhal G S, Smith D H 2011 Transp. Porous Media 86 243Google Scholar

    [52]

    Dong B, YanY Y, Li W Z, Song Y C 2011 J. Bionic. Eng. 7 267Google Scholar

  • 图 1  液滴内外压力差${P_{\rm{i}}} - {P_{\rm{o}}}$和半径倒数1/r之间的关系

    Figure 1.  Relationship between pressure jump across the droplet interface${P_{\rm{i}}} - {P_{\rm{o}}}$ and inverse of droplet radius 1/r.

    图 2  不同初始静态接触角${\theta _{{\rm{eq}}}}$时得到的稳态接触角$\theta $ (a) ${\theta _{{\rm{eq}}}}{\rm{ = }}{60^{\rm{o}}}$; (b) ${\theta _{{\rm{eq}}}}{\rm{ = }}{90^{\rm{o}}};$ (c) ${\theta _{{\rm{eq}}}}={120^{\rm{o}}}$

    Figure 2.  Steady state contact angles $\theta $ obtained with the different values of static contact angles ${\theta _{{\rm{eq}}}}$: (a) ${\theta _{{\rm{eq}}}}{\rm{ = }}{60^{\rm{o}}}$; (b) ${\theta _{{\rm{eq}}}}{\rm{ = }}{90^{\rm{o}}};$ (c) ${\theta _{{\rm{eq}}}}{\rm{ = }}{120^{\rm{o}}}$.

    图 3  稳态接触角$\theta $与指标参数${\phi _{{\rm{wall}}}}$的线性关系

    Figure 3.  Linear relationship between steady state contact angle $\theta $ and the order parameter of a solid wall ${\phi _{{\rm{wall}}}}$.

    图 4  T型通道问题物理模型

    Figure 4.  Physical model for the case of T shape channel.

    图 5  不同Ca数对应的液滴形态 (a) Ca = 0.06370; (b) Ca = 0.06835; (c) Ca = 0.07300; (d) Ca = 0.07750; (e) Ca = 0.0820; (f) Ca = 0.08650; (g) Ca = 0.0910

    Figure 5.  Droplet morphology obtained under various values of Ca: (a) Ca = 0.06370; (b) Ca = 0.06835; (c) Ca = 0.07300; (d) Ca = 0.07750; (e) Ca = 0.0820; (f) Ca = 0.08650; (g) Ca = 0.0910.

    图 6  在剪切变稀幂律流体中, 不同的$Ca$数下形成液滴的无量纲直径(其中D是形成的液滴的直径, H是管径的直径)

    Figure 6.  Droplet dimensionless diameters at different values of $Ca$ in shear thinning power-law fluid. D is diameters of the droplet and H is width of the main channel.

    图 7  多孔介质驱替模型

    Figure 7.  The model for porous media displacement problem.

    图 8  不同的$Ca$数下, 被驱替液为剪切变稀、牛顿与剪切变稠流体时得到的指进形态图 (a)−(c) n = 0.7; (d)−(f) n =1.0; (g)−(i) n = 1.3

    Figure 8.  Final finger patterns obtained under different values of Ca for shear thinning, Newtonian and shear thickening fluids: (a)− (c) n = 0.7; (d)−(f) n =1.0; (g)−(i) n = 1.3.

    图 9  驱替完成时, 不同幂律指数情况下得到的气液两相动力黏度示意图 $({\rm{a}})\;n = 0.7$; $({\rm{b}})\;n = 1.0$; $({\rm{c}})\;n = 1.3$

    Figure 9.  Schematic diagram of gas-liquid two phase dynamics viscosity obtained under different values of power-law exponent: $({\rm{a}})\;n = 0.7$; $({\rm{b}})\;n = 1.0$; $({\rm{c}})\;n = 1.3$.

    图 10  $Ca$ 数和幂律指数n对幂律流体驱替效率的影响

    Figure 10.  Effects of $Ca$and power-law exponent n on power-law fluid displacement efficiency.

    图 11  不同的动力黏性比M下, 被驱替液为剪切变稀、牛顿与剪切变稠流体时得到的指进形态图 (a)−(c) n = 0.7; (d)−(f) n = 1.0; (g)−(i) n = 1.3

    Figure 11.  Final finger patterns obtained under different values of viscosity ratios M for shear thinning, Newtonian and shear thickening fluids: (a)−(c) n = 0.7; (d)−(f) n = 1.0; (g)−(i) n = 1.3.

    图 12  动力黏度比M和幂律指数n对幂律流体驱替效率的影响

    Figure 12.  Effects of viscosity ratio M and power-law exponent n on power-law fluid displacement efficiency.

    图 13  不同的润湿性角度$\theta $下, 被驱替液为剪切变稀、牛顿与剪切变稠流体时得到的指进形态图 (a)−(c) $\theta = {45^{\circ}}$; (d)− (f) $\theta = {60^{\circ}}$; (g)−(i) $\theta = {120^{\circ}}$; (j)−(l) $\theta = {135^{\circ}}$

    Figure 13.  Final finger patterns obtained under different values of contact angles $\theta $ for shear thinning, Newtonian and shear thickening fluids: (a)−(c) $\theta = {45^{\circ}}$; (d)-(f) $\theta = {60^{\circ}}$; (g)−(i) $\theta = {120^{\circ}}$; (j)−(l) $\theta = {135^{\circ}}$.

    图 14  润湿性$\theta $和幂律指数n对幂律流体驱替效率的影响

    Figure 14.  Effects of contact angles $\theta $ and power-law exponent n on power-law fluid displacement efficiency.

    图 15  不同的障碍物几何类型, 被驱替液为剪切变稀、牛顿与剪切变稠流体时驱得到的指进形态图 (a)−(c) n = 0.4; (d)− (f) n = 0.7; (g)−(i) n = 1.0; (j)−(l) n = 1.3, (m)−(o) n = 1.6

    Figure 15.  Final finger patterns obtained under different geometric type for shear thinning, Newtonian and shear thickening fluids: (a)− (c) n = 0.4; (d)−(f) n = 0.7; (g)−(i) n = 1.0; (j)−(l) n = 1.3; (m)−(o) n = 1.6.

    图 16  障碍物几何类型和幂律指数n对幂律流体驱替效率的影响

    Figure 16.  Effects of geometric type and power-law exponent n on power-law fluid displacement efficiency.

  • [1]

    Santvoort J V, Golombok M 2018 J. Pet. Sci. Eng. 167 28Google Scholar

    [2]

    Fang T M, Wang M H, Gao Y, Zhang Y N, Yan Y G, Zhang J 2019 Chem. Eng. Sci. 197 204Google Scholar

    [3]

    Xu X F, Zhang J, Liu F X, Wang X J, Wei W, Liu Z J 2017 Int. J. Multiphase Flow. 95 84Google Scholar

    [4]

    Du W, Fu T T, Duan Y F, Zhu C Y, Ma Y G, Li H Z 2018 Chem. Eng. Sci. 176 66Google Scholar

    [5]

    Fu T T, Ma Y G, Li H Z 2015 Chem. Eng. Process. 97 38Google Scholar

    [6]

    Salehi M S, Esfidani M T, Afshin H, Firoozabadi B 2018 Exp. Therm. Fluid Sci. 94 148Google Scholar

    [7]

    Sontti S G, Atta A 2017 Chem. Eng. J. 330 245Google Scholar

    [8]

    娄钦, 李涛, 杨茉 2018 物理学报 67 234701Google Scholar

    Lou Q, Li T, Yang M 2018 Acta Phys. Sin. 67 234701Google Scholar

    [9]

    臧晨强, 娄钦 2017 物理学报 66 134701Google Scholar

    Zang C Q, Lou Q 2017 Acta Phys. Sin. 66 134701Google Scholar

    [10]

    Lou Q, Guo Z L, Shi B C 2012 Europhys. Lett. 99 64005Google Scholar

    [11]

    Lou Q, Guo Z L 2015 Phys. Rev. E 91 013302Google Scholar

    [12]

    娄钦, 李涛, 李凌 2018 上海理工大学学报 40 13

    Lou Q, Li T, Li L 2018 J. Univ. Shanghai Sci. Technol. 40 13

    [13]

    谢驰宇, 张建影, 王沫然 2016 计算物理 33 147Google Scholar

    Xie C Y, Zhang J Y, Wang M R 2016 Chin. J. Computat. Phys. 33 147Google Scholar

    [14]

    Swift M R, Osborn W R, Yeomans J M 1995 Phys. Rev. Lett. 75 830Google Scholar

    [15]

    Shi Y, Tang G H 2014 Comput. Math. Appl. 68 1279Google Scholar

    [16]

    Fakhari A, Rahimian M H 2010 Phys. Rev. E 81 036707Google Scholar

    [17]

    Shi Y, Tang G H 2016 J. Non-Newtonian Fluid Mech. 229 86Google Scholar

    [18]

    Ba Y, Wang N N, Liu H H, Li Q, He G Q 2018 Phys. Rev. E 97 033307Google Scholar

    [19]

    Halliday I, Law R, Care C M, Hollis A 2006 Phys. Rev. E 73 056708Google Scholar

    [20]

    Halliday I, Hollis A P, Care C M 2007 Phys. Rev. E 76 026708Google Scholar

    [21]

    闵琪, 段远源, 王晓东, 吴莘馨 2013 热科学与技术 12 335

    Min Q, Duan Y Y, Wang X D, Wu X X 2013 J. Therm. Sci. Technol. 12 335

    [22]

    Shan X W, Chen H D 1994 Phys. Rev. E 49 2941Google Scholar

    [23]

    Shan X W, Chen H D 1993 Phys. Rev. E 47 1815Google Scholar

    [24]

    Nourgaliev R R, Dinh T N, Theofanous T G, Joseph D 2003 Int. J. Multiphase Flow. 29 117Google Scholar

    [25]

    Huang H B, Sukop M, Lu X Y 2015 Multiphase Lattice Boltzmann Methods: Theory and Application (USA: WILEY Blackwell) pp7−10

    [26]

    Yu Z, Fan L S 2009 J. Comput. Phys. 228 6456Google Scholar

    [27]

    He X Y, Chen S Y, Zhang R Y 1999 J. Comput. Phys. 152 642Google Scholar

    [28]

    Fakhari A, Bolster D 2017 J. Comput. Phys. 334 620Google Scholar

    [29]

    Fakhari A, Rahimian M H 2011 Comput. Fluids 40 156Google Scholar

    [30]

    Lou Q, Guo Z L, Shi B C 2013 Phys. Rev. E 87 063301Google Scholar

    [31]

    Sadeghi R, Shadloo M S 2017 Numer. Heat Transfer Part A 71 560Google Scholar

    [32]

    Kano Y, Sato T 2017 Energy Procedia 114 3385Google Scholar

    [33]

    Ye F, Di Q F, Wang W C, Chen F, Chen H J, Hua S 2018 J. Appl. Math. Mech. 39 513Google Scholar

    [34]

    Huang H B, Huang J J, Lu X Y 2014 J. Comput. Phys. 269 386Google Scholar

    [35]

    Chao J H, Mei R W, Singh R, Shyy W 2011 Int. J. Numer. Methods Fluids 66 622Google Scholar

    [36]

    Chen Y P, Deng Z L 2017 J. Fluid Mech. 819 401Google Scholar

    [37]

    Fu Y H, Bai L, Jin Y, Cheng Y 2017 Phys. Fluids 29 032003Google Scholar

    [38]

    郭照立, 郑楚光 2008 格子Boltzmann方法的原理及应用 (北京: 科学出版社) 第244页

    Guo Z L, Zheng C G 2008 Theory and Applications of Lattice Boltzmann Method (Beijing: Science Press) p244 (in Chinese)

    [39]

    Guo Z L, Zheng C G, Shi B C 2011 Phys. Rev. E 83 036707Google Scholar

    [40]

    Davies A R, Summers J L, Wilson M C T 2006 Int. J. Comput. Fluid. D 20 415Google Scholar

    [41]

    Shi Y, Tang G H 2015 Commun. Comput. Phys. 17 1056Google Scholar

    [42]

    Ansarinasab J, Jamialahmadi M 2017 J. Pet. Sci. Eng. 156 748Google Scholar

    [43]

    Basirat F, Yang Z B, Niemi A 2017 Adv. Water Resour. 109 181

    [44]

    Zheng X L, Mahabadi N, Yun T S, Jang J 2017 J. Geophys. Res.: Solid Earth 122 1634Google Scholar

    [45]

    Xu Z Y, Liu H H, Valocchi A J 2017 Water Resources Res. 53 3770Google Scholar

    [46]

    Soulaine C, Roman S, Kovscek A, Tchelepi H A 2018 J. Fluid Mech. 855 616Google Scholar

    [47]

    黄海波 2009 第六届全国流体力学青年研讨会 中国杭州 2009年10月10日 第27页

    Huang H B 2009 The 6th National Youth Workshop on Fluid Mechanics Hangzhou, China October 10, 2009 p27 (in Chinese)

    [48]

    Shiri Y, HassaniH,Nazari M, Sharifi M 2018 Mol. Simul. 44 708Google Scholar

    [49]

    Liu H H, ValocchiAJ, Kang Q J, Werth C 2013 Transp. Porous Media 99 555Google Scholar

    [50]

    Dong B, YanY Y, Li W Z, Song Y C 2010 Comput. Fluids 39 768Google Scholar

    [51]

    Ferer M, Anna S L,Tortora P, Kadambi J R, Oliver M, Bromhal G S, Smith D H 2011 Transp. Porous Media 86 243Google Scholar

    [52]

    Dong B, YanY Y, Li W Z, Song Y C 2011 J. Bionic. Eng. 7 267Google Scholar

  • [1] Zhao ziqing, Yan yu, Lou qin. Three-dimensional mesoscopic numerical simulation of the rising behavior of bubbles with large density ratio in porous media channels. Acta Physica Sinica, 2025, 74(5): . doi: 10.7498/aps.74.20241678
    [2] Zhang Mu-An, Wang Jin-Qing, Wu Rui, Feng Zhi, Zhan Ming-Xiu, Xu Xu, Chi Zuo-He. Three-dimensional numerical simulation of Ostwald ripening characteristics of bubbles in porous medium. Acta Physica Sinica, 2023, 72(16): 164701. doi: 10.7498/aps.72.20230695
    [3] Liu Gao-Jie, Shao Zi-Yu, Lou Qin. A lattice Boltzmann study of miscible displacement containing dissolution reaction in porous medium. Acta Physica Sinica, 2022, 71(5): 054702. doi: 10.7498/aps.71.20211851
    [4] Tang Guo-Zhi, Wang Lei, Li Ding-Gen. Predetermined thermal conductivity porous medium generated by conditional generation adversarial network. Acta Physica Sinica, 2021, 70(5): 054401. doi: 10.7498/aps.70.20201061
    [5] A lattice Boltzmann study on miscible displacements with dissolution in porous media. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211851
    [6] Zhang Xian-Fei, Wang Ling-Ling, Zhu Hai, Zeng Cheng. Numerical study on salt finger at interface between fluid layer and porous layer by single-domain approach. Acta Physica Sinica, 2020, 69(21): 214701. doi: 10.7498/aps.69.20200351
    [7] Qiu Hao-Miao, Xia Tang-Dai, He Shao-Heng, Chen Wei-Yun. Propagation characteristics of pseudo-Scholte waves at the interface between finite-thickness fluid layer and quasi-saturated porous half-space. Acta Physica Sinica, 2018, 67(20): 204302. doi: 10.7498/aps.67.20180853
    [8] He Zong-Xu, Yan Wei-Wei, Zhang Kai, Yang Xiang-Long, Wei Yi-Kun. Simulation of effect of bottom heat source on natural convective heat transfer characteristics in a porous cavity by lattice Boltzmann method. Acta Physica Sinica, 2017, 66(20): 204402. doi: 10.7498/aps.66.204402
    [9] Jia Yu-Peng, Wang Jing-Fu, Zheng Kun-Can, Zhang Bing, Pan Gang, Gong Zhi-Jun, Wu Wen-Fei. Measurement of single phase flow in porous media using PIV technique. Acta Physica Sinica, 2016, 65(10): 106701. doi: 10.7498/aps.65.106701
    [10] Liu Gao-Jie, Guo Zhao-Li, Shi Bao-Chang. A coupled lattice Boltzmann model for fluid flow and diffusion in a porous medium. Acta Physica Sinica, 2016, 65(1): 014702. doi: 10.7498/aps.65.014702
    [11] Zhang Ting, Shi Bao-Chang, Chai Zhen-Hua. Lattice Boltzmann simulation of dissolution and precipitation in porous media. Acta Physica Sinica, 2015, 64(15): 154701. doi: 10.7498/aps.64.154701
    [12] Qi Cong, He Guang-Yan, Li Yi-Min, He Yu-Rong. Numerical simulation of natural convection of square enclosure filled with Cu/Al2O3-water mixed nanofluid based on lattice Boltzmann method. Acta Physica Sinica, 2015, 64(2): 024703. doi: 10.7498/aps.64.024703
    [13] Wang Ping, Yin Yu-Zhen, Shen Sheng-Qiang. Numerical study of convection heat transfer in ordered three-dimensional porous media. Acta Physica Sinica, 2014, 63(21): 214401. doi: 10.7498/aps.63.214401
    [14] He Yu-Bo, Lin Xiao-Yan, Dong Xiao-Liang. Use of lattice Boltzmann method to simulate 2-D partial differential equation. Acta Physica Sinica, 2013, 62(19): 194701. doi: 10.7498/aps.62.194701
    [15] Han Qing-Bang, Xu Shan, Xie Zu-Feng, Ge Rui, Wang Xi, Zhao Sheng-Yong, Zhu Chang-Ping. Analysis and experimental verification of the relation between Scholte wave velocity and sediment containing two-phase fluid properties. Acta Physica Sinica, 2013, 62(19): 194301. doi: 10.7498/aps.62.194301
    [16] Zheng Kun-Can, Wen Zhi, Wang Zhan-Sheng, Lou Guo-Feng, Liu Xun-Liang, Wu Wen-Fei. Review on forced convection heat transfer in porous media. Acta Physica Sinica, 2012, 61(1): 014401. doi: 10.7498/aps.61.014401
    [17] Yuan Mei-Juan, Zheng Wei, Yu Bo-Ming, Yuan Jie. Fractal analysis of Casson fluid flow in porous media. Acta Physica Sinica, 2011, 60(2): 024703. doi: 10.7498/aps.60.024703
    [18] Zhao Ming, Yu Boming. Numerical simulations of immiscible two-phase flow displacement based on 3D network model for fractal porous media. Acta Physica Sinica, 2011, 60(9): 098103. doi: 10.7498/aps.60.098103
    [19] Luo Ying-Ying, Zhan Jie-Min, Li Yok-Sheung. Numerical simulation of salt finger convection in porous media. Acta Physica Sinica, 2008, 57(4): 2306-2313. doi: 10.7498/aps.57.2306
    [20] Cui Zhi-Wen, Wang Ke-Xie, Cao Zheng-Liang, Hu Heng-Shan. Slow waves propagation in BISQ poroelastic model. Acta Physica Sinica, 2004, 53(9): 3083-3089. doi: 10.7498/aps.53.3083
Metrics
  • Abstract views:  10597
  • PDF Downloads:  125
  • Cited By: 0
Publishing process
  • Received Date:  05 June 2019
  • Accepted Date:  15 July 2019
  • Available Online:  01 November 2019
  • Published Online:  05 November 2019

/

返回文章
返回