搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

流体/准饱和多孔介质中伪Scholte波的传播特性

仇浩淼 夏唐代 何绍衡 陈炜昀

引用本文:
Citation:

流体/准饱和多孔介质中伪Scholte波的传播特性

仇浩淼, 夏唐代, 何绍衡, 陈炜昀

Propagation characteristics of pseudo-Scholte waves at the interface between finite-thickness fluid layer and quasi-saturated porous half-space

Qiu Hao-Miao, Xia Tang-Dai, He Shao-Heng, Chen Wei-Yun
PDF
导出引用
  • 研究流体/多孔介质界面Scholte波的传播特性对于水下勘探、地震工程等领域具有重要意义.本文基于Biot理论和等效流体模型,采用势函数方法,推导了描述有限厚度流体/准饱和多孔半空间远场界面波的特征方程和位移、孔压计算公式.在此基础上,分别以砂岩和松散沉积土为例,研究了流体/硬多孔介质和流体/软多孔介质两种情况下,可压缩流体层厚度和多孔介质饱和度对伪Scholte波传播特性的影响.结果表明:多孔介质软硬程度显著影响界面波的种类、相速度、位移和水压力分布;有限厚度流体/饱和多孔半空间界面处伪Scholte波相速度与界面波波长和流体厚度的比值有关;孔隙水中溶解的少量气体对剪切波的相速度的影响不大,对压缩波相速度、伪Scholte波相速度和孔隙水压力分布影响显著.
    The propagation of interface waves at the interface between a fluid-saturated porous medium and a fluid has been extensively investigated in the last three decades due to its various and wide applications in several fields including earthquake engineering and materials testing. Although the sea floor is usually covered with porous marine sediment, the previous interface wave theories are rarely used for submarine acoustic problems for the following reasons. 1) In addition to hard porous media, unconsolidated soft porous media exist widely in the seabed, which are seldom considered in previous studies. 2) The depth of seawater is limited, and in many cases it cannot be regarded as a half-space. 3) The fluid-saturated porous medium model cannot describe the effect of a small number of bubbles caused by decomposition of organic matter in the sediment. Hence, the present paper focuses on the low-frequency pseudo-Scholte waves at the interface between an overlying fluid layer of finite thickness and a quasi-saturated porous half-space. The overlying fluid is assumed to be ideal compressible water and the quasi-saturated porous media are assumed to be sandstone and unconsolidated sediment and modeled by Biot theory. A fluid equivalent model is used to analyze the effects of the bubbles in the pores. Based on the boundary conditions, the closed-form dispersion equations of far-field interface waves are derived by using classical potential function method. The velocity and attenuation of pseudo-Scholte wave are determined by Newton iteration in a reasonable rooting interval. The analytical expressions of the displacement field and fluid pressure distribution caused by pseudo-Scholte waves are also derived. Then, based on the derived theoretical formulation, the numerical examples of calculations are presented. Our calculation results show that the stiffness of porous medium significantly affects the mode, phase velocity, displacement and fluid pressure distribution of interface waves; the phase velocity of the pseudo-Scholte wave in the finite-thickness fluid/fluid-saturated porous half-space is related to the ratio of the wavelength to the thickness of the fluid layer; the phase velocity of the shear wave is insensitive to a small number of bubbles dissolved in the pores, but the existence of bubbles has a significant influence on the phase velocity of the compressional wave and the pseudo-Scholte wave. Furthermore, the existence of bubbles can significantly affect the distribution of the pore pressure.
      通信作者: 夏唐代, xtd@zju.edu.cn
    • 基金项目: 国家自然科学基金(批准号:41502285)和江苏省自然科学基金(批准号:BK20150952)资助的课题.
      Corresponding author: Xia Tang-Dai, xtd@zju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 41502285) and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20150952).
    [1]

    Han Q B, Qian M L, Zhu C P 2007 Acta Phys. Sin. 56 313 (in Chinese)[韩庆邦, 钱梦騄, 朱昌平 2007 物理学报 56 313]

    [2]

    Xia T D, Wu S M 1999 J. Hydraul. Eng. 6 26 (in Chinese) [夏唐代, 吴世明 1999 水利学报 6 26]

    [3]

    Xia T D, Chen H L, Wu S M 1999 J. Vib. Eng. 3 348 (in Chinese) [夏唐代, 陈汉良, 吴世明 1999 振动工程学报 3 348]

    [4]

    Xia T D, Sun M Y, Chen H L 2000 J. Zhejiang Univ. (Eng. Sci.) 34 355 (in Chinese)[夏唐代, 孙鸣宇, 陈汉良 2000 浙江大学学报(工学版) 34 355]

    [5]

    Padilla F, Billy M D, Quentin G 1999 J. Acoust. Soc. Am. 106 666

    [6]

    Zhang H G, Pu S C, Yang S E 2010 J. Harbin Eng. Univ. 31 879 (in Chinese)[张海刚, 朴胜春, 杨士莪 2010 哈尔滨工程大学学报 31 879]

    [7]

    Zhu H H, Zheng H, Lin J M, Tang Y F, Kong L M 2016 J. Shanghai Jiaotong Univ. 50 257 (in Chinese)[祝捍皓, 郑红, 林建民, 汤云峰, 孔令明 2016 上海交通大学学报 50 257]

    [8]

    Markov M G 2009 Geophys. J. Int. 177 603

    [9]

    Biot M A 1956 J. Acoust. Soc. Am. 28 168

    [10]

    Biot M A 1956 J. Acoust. Soc. Am. 28 179

    [11]

    Plona T J 1980 Appl. Phys. Lett. 36 259

    [12]

    Han Q B, Xu S, Xie Z F, Ge R, Wang Q, Zhao S Y 2013 Acta Phys. Sin. 62 194301 (in Chinese)[韩庆邦, 徐杉, 谢祖峰, 葛蕤, 王茜, 赵胜永 2013 物理学报 62 194301]

    [13]

    Feng S, Johnson D L 1983 J. Acoust. Soc. Am. 74 906

    [14]

    Allard, J F, Henry M, Glorieux C, Petillon S, Lauriks W 2003 J. Appl. Phys. 93 1298

    [15]

    Allard J F, Henry M, Glorieux C, Lauriks W, Petillon S 2004 J. Appl. Phys. 95 528

    [16]

    van Dalen K N, Drijkoningen G G, Smeulders D M 2011 J. Acoust. Soc. Am. 129 2912

    [17]

    Wang F, Huang Y W, Sun Q H 2017 Acta Phys. Sin. 66 194302 (in Chinese)[王飞, 黄益旺, 孙启航 2017 物理学报 66 194302]

    [18]

    Wang J T, Jin F, Zhang C H 2013 Ocean Eng. 63 8

    [19]

    Yang J 2005 Acta Geotech. 55 409

    [20]

    Verruijt A 1969 Flow Through Porous Media (New York: Academic Press) pp331-376

  • [1]

    Han Q B, Qian M L, Zhu C P 2007 Acta Phys. Sin. 56 313 (in Chinese)[韩庆邦, 钱梦騄, 朱昌平 2007 物理学报 56 313]

    [2]

    Xia T D, Wu S M 1999 J. Hydraul. Eng. 6 26 (in Chinese) [夏唐代, 吴世明 1999 水利学报 6 26]

    [3]

    Xia T D, Chen H L, Wu S M 1999 J. Vib. Eng. 3 348 (in Chinese) [夏唐代, 陈汉良, 吴世明 1999 振动工程学报 3 348]

    [4]

    Xia T D, Sun M Y, Chen H L 2000 J. Zhejiang Univ. (Eng. Sci.) 34 355 (in Chinese)[夏唐代, 孙鸣宇, 陈汉良 2000 浙江大学学报(工学版) 34 355]

    [5]

    Padilla F, Billy M D, Quentin G 1999 J. Acoust. Soc. Am. 106 666

    [6]

    Zhang H G, Pu S C, Yang S E 2010 J. Harbin Eng. Univ. 31 879 (in Chinese)[张海刚, 朴胜春, 杨士莪 2010 哈尔滨工程大学学报 31 879]

    [7]

    Zhu H H, Zheng H, Lin J M, Tang Y F, Kong L M 2016 J. Shanghai Jiaotong Univ. 50 257 (in Chinese)[祝捍皓, 郑红, 林建民, 汤云峰, 孔令明 2016 上海交通大学学报 50 257]

    [8]

    Markov M G 2009 Geophys. J. Int. 177 603

    [9]

    Biot M A 1956 J. Acoust. Soc. Am. 28 168

    [10]

    Biot M A 1956 J. Acoust. Soc. Am. 28 179

    [11]

    Plona T J 1980 Appl. Phys. Lett. 36 259

    [12]

    Han Q B, Xu S, Xie Z F, Ge R, Wang Q, Zhao S Y 2013 Acta Phys. Sin. 62 194301 (in Chinese)[韩庆邦, 徐杉, 谢祖峰, 葛蕤, 王茜, 赵胜永 2013 物理学报 62 194301]

    [13]

    Feng S, Johnson D L 1983 J. Acoust. Soc. Am. 74 906

    [14]

    Allard, J F, Henry M, Glorieux C, Petillon S, Lauriks W 2003 J. Appl. Phys. 93 1298

    [15]

    Allard J F, Henry M, Glorieux C, Lauriks W, Petillon S 2004 J. Appl. Phys. 95 528

    [16]

    van Dalen K N, Drijkoningen G G, Smeulders D M 2011 J. Acoust. Soc. Am. 129 2912

    [17]

    Wang F, Huang Y W, Sun Q H 2017 Acta Phys. Sin. 66 194302 (in Chinese)[王飞, 黄益旺, 孙启航 2017 物理学报 66 194302]

    [18]

    Wang J T, Jin F, Zhang C H 2013 Ocean Eng. 63 8

    [19]

    Yang J 2005 Acta Geotech. 55 409

    [20]

    Verruijt A 1969 Flow Through Porous Media (New York: Academic Press) pp331-376

  • [1] 金燕, 石子璇, 金奕扬, 田文得, 张天辉, 陈康. 有限多孔介质诱导活性哑铃的聚集行为. 物理学报, 2024, 73(16): 160502. doi: 10.7498/aps.73.20240784
    [2] 张沐安, 王进卿, 吴睿, 冯致, 詹明秀, 徐旭, 池作和. 多孔介质内气泡Ostwald熟化特性三维孔网数值模拟. 物理学报, 2023, 72(16): 164701. doi: 10.7498/aps.72.20230695
    [3] 刘高洁, 邵子宇, 娄钦. 多孔介质中含溶解反应的互溶驱替过程格子Boltzmann研究. 物理学报, 2022, 71(5): 054702. doi: 10.7498/aps.71.20211851
    [4] 刘高洁, 邵子宇, 娄钦. 多孔介质中含有溶解反应的互溶驱替过程格子Boltzmann研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211851
    [5] 唐国智, 汪垒, 李顶根. 使用条件生成对抗网络生成预定导热率多孔介质. 物理学报, 2021, 70(5): 054401. doi: 10.7498/aps.70.20201061
    [6] 张先飞, 王玲玲, 朱海, 曾诚. 自由流体层与多孔介质层界面的盐指现象的统一域法模拟. 物理学报, 2020, 69(21): 214701. doi: 10.7498/aps.69.20200351
    [7] 娄钦, 黄一帆, 李凌. 不可压幂律流体气-液两相流格子Boltzmann 模型及其在多孔介质内驱替问题中的应用. 物理学报, 2019, 68(21): 214702. doi: 10.7498/aps.68.20190873
    [8] 乔厚, 何锃, 张恒堃, 彭伟才, 江雯. 二维含多孔介质周期复合结构声传播分析. 物理学报, 2019, 68(12): 128101. doi: 10.7498/aps.68.20190164
    [9] 贾宇鹏, 王景甫, 郑坤灿, 张兵, 潘刚, 龚志军, 武文斐. 应用粒子图像测试技术测量球床多孔介质单相流动的流场. 物理学报, 2016, 65(10): 106701. doi: 10.7498/aps.65.106701
    [10] 刘高洁, 郭照立, 施保昌. 多孔介质中流体流动及扩散的耦合格子Boltzmann模型. 物理学报, 2016, 65(1): 014702. doi: 10.7498/aps.65.014702
    [11] 王平, 尹玉真, 沈胜强. 三维有序排列多孔介质对流换热的数值研究. 物理学报, 2014, 63(21): 214401. doi: 10.7498/aps.63.214401
    [12] 王丁, 张美根. 各向异性渗流条件下弹性波的传播特征. 物理学报, 2014, 63(6): 069101. doi: 10.7498/aps.63.069101
    [13] 韩庆邦, 徐杉, 谢祖峰, 葛蕤, 王茜, 赵胜永, 朱昌平. Scholte波与含泥沙两相流介质属性关系的分析及仿真验证. 物理学报, 2013, 62(19): 194301. doi: 10.7498/aps.62.194301
    [14] 郑坤灿, 温治, 王占胜, 楼国锋, 刘训良, 武文斐. 前沿领域综述多孔介质强制对流换热研究进展. 物理学报, 2012, 61(1): 014401. doi: 10.7498/aps.61.014401
    [15] 员美娟, 郁伯铭, 郑伟, 袁洁. 多孔介质中卡森流体的分形分析. 物理学报, 2011, 60(2): 024703. doi: 10.7498/aps.60.024703
    [16] 赵明, 郁伯铭. 基于分形多孔介质三维网络模型的非混溶两相流驱替数值模拟. 物理学报, 2011, 60(9): 098103. doi: 10.7498/aps.60.098103
    [17] 罗莹莹, 詹杰民, 李毓湘. 多孔介质中盐指现象的数值模拟. 物理学报, 2008, 57(4): 2306-2313. doi: 10.7498/aps.57.2306
    [18] 庞 晶, 陈小刚, 宋金宝. 有流存在时三层流体界面波的二阶Stokes波解. 物理学报, 2007, 56(8): 4733-4741. doi: 10.7498/aps.56.4733
    [19] 韩庆邦, 钱梦騄, 朱昌平. 激光超声方法研究固-固界面波传播特性. 物理学报, 2007, 56(1): 313-320. doi: 10.7498/aps.56.313
    [20] 崔志文, 王克协, 曹正良, 胡恒山. 多孔介质BISQ模型中的慢纵波. 物理学报, 2004, 53(9): 3083-3089. doi: 10.7498/aps.53.3083
计量
  • 文章访问数:  6584
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-29
  • 修回日期:  2018-07-19
  • 刊出日期:  2019-10-20

/

返回文章
返回