搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多孔介质中流体流动及扩散的耦合格子Boltzmann模型

刘高洁 郭照立 施保昌

引用本文:
Citation:

多孔介质中流体流动及扩散的耦合格子Boltzmann模型

刘高洁, 郭照立, 施保昌

A coupled lattice Boltzmann model for fluid flow and diffusion in a porous medium

Liu Gao-Jie, Guo Zhao-Li, Shi Bao-Chang
PDF
导出引用
  • 多孔介质中高Pclet数和大黏性比下混溶流体的流动和扩散广泛存在于二氧化碳驱油、化工生产等工业过程中. 用数值方法对该问题进行研究时, 关键在于如何正确描述高Pclet数和大黏性比下多孔介质内流体的行为. 为此, 提出了一种基于多松弛模型和格子动理模型的耦合格子Boltzmann模型. 通过Chapman-Enskog分析, 证明该模型能有效求解不可压Navier-Stokes方程和对流扩散方程. 数值结果表明, 该模型不仅具有二阶精度和良好的稳健性, 而且对于高Pclet数和大黏性比的问题具有良好的数值稳定性, 为模拟此类问题提供了有效工具.
    The flow and diffusion of miscible fluid in a porous medium with a high Plcet number (Pe) and large viscosity ratio widely exist in industrial processes, such as oil recovery, geological sequestration of carbon dioxide, and chemical engineering process. When these problems are studied by numerical methods, the key point is to accurately describe the flow dynamics and diffusion process in a porous medium at the same time. As an alternative to conventional numerical methods, the lattice Boltzmann method based on kinetic theory is well suited to pore-scale simulations of miscible fluid flows and molecular diffusion. However, most of the existing lattice Boltzmann models have many difficulties (e.g. robustness and numerical stability) in simulating such systems at high Pe and large viscosity ratio. In this paper, in order to overcome the above difficulties, we propose a coupled lattice Boltzmann model based on the multiple-relaxation-time model and the lattice kinetic scheme for the fluid flow and diffusion, respectively. It can be shown that the incompressible Navier-Stokes equations and the convection-diffusion equation can be derived from the presented coupled model through the Chapman-Enskog procedure. The proposed model is validated by simulating a concentration gradient driven flow in a porous channel. Numerical results demonstrate that the model is of second-order accuracy in space. We further simulate a flow through two types of artificial porous media. The robustness of the presented model is investigated by measuring the permeability and diffusivity under different relaxation times. It is found that the model is insensitive to relaxation parameters. In addition, the miscible viscous displacement in two parallel plates is simulated to test the numerical stability of the model. It is observed that the results accord well with those reported in previous work, and the model is very stable at high Pe and large viscosity ratio in comparison with the standard lattice Bhatnagar-Gross-Krook model. Overall, the coupled lattice Boltzmann model can serve as an effective tool for directly simulating the fluid flow and diffusion at high Pe and large viscosity ratio in the pores of a porous medium.
      通信作者: 郭照立, zlguo@hust.edu.cn
    • 基金项目: 国家杰出青年科学基金(批准号: 51125024)和国家重点基础研究发展计划(批准号: 2011CB707305)资助课题.
      Corresponding author: Guo Zhao-Li, zlguo@hust.edu.cn
    • Funds: Project supported by the National Science Fund for Distinguished Young Scholars of China (Grant No. 51125024) and the National Basic Research Program of China (Grant No. 2011CB707305).
    [1]

    Jayaraj S, Kang S, Suh Y 2007 J. Mech. Sci. Technol. 21 536

    [2]

    Orr F 2009 Science 325 1656

    [3]

    Zheng K C, Wen Z, Wang Z S, Lou G F, Liu X L, Wu W F 2012 Acta Phys. Sin. 61 014401 (in Chinese) [郑坤灿, 温治, 王占胜, 楼国锋, 刘训良, 武文斐 2012 物理学报 61 014401]

    [4]

    Lin J, Trabold T, Walluk M, Smith D 2013 Int. J. Hydrog. Energy 38 12024

    [5]

    Ghassemi A, Pak A 2011 Int. J. Numer. Anal. Methods Geomech. 35 886

    [6]

    Song B W, Ren F, Hu H B, Huang Q G 2015 Chin. Phys. B 24 014703

    [7]

    Kang Q, Lichtner P C, Zhang D 2006 J. Geophys. Res. 111 B05203

    [8]

    Sun D K, Xiang N, Jiang D, Chen K, Yi H, Ni Z H 2013 Chin. Phys. B 22 114704

    [9]

    Esfahanian V, Dehdashti E, Dehrouye-Semnani A M 2014 Chin. Phys. B 23 084702

    [10]

    Guo Y L, Xu H H, Shen S Q, Wei L 2013 Acta Phys. Sin. 62 144704 (in Chinese) [郭亚丽, 徐鹤函, 沈胜强, 魏兰 2013 物理学报 62 144704]

    [11]

    Tao S, Wang L, Guo Z L 2014 Acta Phys. Sin. 63 214703 (in Chinese) [陶实, 王亮, 郭照立 2014 物理学报 63 214703]

    [12]

    Lallemand P, Luo L S 2000 Phys. Rev. E 61 6546

    [13]

    Pan C, Luo L S, Miller C T 2006 Comput. Fluid 35 898

    [14]

    d'Humires D, Ginzburg I 2002 Phil. Trans. R. Soc. Lond. A 360 437

    [15]

    Premnath K N, Abraham J 2007 J. Comput. Phys. 224 539

    [16]

    Inamuro T 2002 Philos. Trans. R. Soc. London, Ser. A 360 477

    [17]

    Yang X G, Shi B C, Chai Z H 2014 Phys. Rev. E 90 013309

    [18]

    Chapman S, Cowling T G 1990 The Mathematical Theory of Non-Uniform Gases (Cambridge: Cambridge University Press) p359

    [19]

    Ladd A 1994 J. Fluid Mech. 271 285

    [20]

    Wang J, Wang D, Lallemand P, Luo L S 2013 Comput. Math. Appl. 65 262

    [21]

    Noble D R, Chen S, Georgiads J G, Buckius R O 1995 Phys. Fluids 7 203

    [22]

    Homsy G M 1987 Annu. Rev. Fluid Mech. 19 271

    [23]

    Rakotomalala N, Salin D, Watzky P 1997 J. Fluid Mech. 338 277

  • [1]

    Jayaraj S, Kang S, Suh Y 2007 J. Mech. Sci. Technol. 21 536

    [2]

    Orr F 2009 Science 325 1656

    [3]

    Zheng K C, Wen Z, Wang Z S, Lou G F, Liu X L, Wu W F 2012 Acta Phys. Sin. 61 014401 (in Chinese) [郑坤灿, 温治, 王占胜, 楼国锋, 刘训良, 武文斐 2012 物理学报 61 014401]

    [4]

    Lin J, Trabold T, Walluk M, Smith D 2013 Int. J. Hydrog. Energy 38 12024

    [5]

    Ghassemi A, Pak A 2011 Int. J. Numer. Anal. Methods Geomech. 35 886

    [6]

    Song B W, Ren F, Hu H B, Huang Q G 2015 Chin. Phys. B 24 014703

    [7]

    Kang Q, Lichtner P C, Zhang D 2006 J. Geophys. Res. 111 B05203

    [8]

    Sun D K, Xiang N, Jiang D, Chen K, Yi H, Ni Z H 2013 Chin. Phys. B 22 114704

    [9]

    Esfahanian V, Dehdashti E, Dehrouye-Semnani A M 2014 Chin. Phys. B 23 084702

    [10]

    Guo Y L, Xu H H, Shen S Q, Wei L 2013 Acta Phys. Sin. 62 144704 (in Chinese) [郭亚丽, 徐鹤函, 沈胜强, 魏兰 2013 物理学报 62 144704]

    [11]

    Tao S, Wang L, Guo Z L 2014 Acta Phys. Sin. 63 214703 (in Chinese) [陶实, 王亮, 郭照立 2014 物理学报 63 214703]

    [12]

    Lallemand P, Luo L S 2000 Phys. Rev. E 61 6546

    [13]

    Pan C, Luo L S, Miller C T 2006 Comput. Fluid 35 898

    [14]

    d'Humires D, Ginzburg I 2002 Phil. Trans. R. Soc. Lond. A 360 437

    [15]

    Premnath K N, Abraham J 2007 J. Comput. Phys. 224 539

    [16]

    Inamuro T 2002 Philos. Trans. R. Soc. London, Ser. A 360 477

    [17]

    Yang X G, Shi B C, Chai Z H 2014 Phys. Rev. E 90 013309

    [18]

    Chapman S, Cowling T G 1990 The Mathematical Theory of Non-Uniform Gases (Cambridge: Cambridge University Press) p359

    [19]

    Ladd A 1994 J. Fluid Mech. 271 285

    [20]

    Wang J, Wang D, Lallemand P, Luo L S 2013 Comput. Math. Appl. 65 262

    [21]

    Noble D R, Chen S, Georgiads J G, Buckius R O 1995 Phys. Fluids 7 203

    [22]

    Homsy G M 1987 Annu. Rev. Fluid Mech. 19 271

    [23]

    Rakotomalala N, Salin D, Watzky P 1997 J. Fluid Mech. 338 277

  • [1] 张沐安, 王进卿, 吴睿, 冯致, 詹明秀, 徐旭, 池作和. 多孔介质内气泡Ostwald熟化特性三维孔网数值模拟. 物理学报, 2023, 72(16): 164701. doi: 10.7498/aps.72.20230695
    [2] 刘高洁, 邵子宇, 娄钦. 多孔介质中含溶解反应的互溶驱替过程格子Boltzmann研究. 物理学报, 2022, 71(5): 054702. doi: 10.7498/aps.71.20211851
    [3] 唐国智, 汪垒, 李顶根. 使用条件生成对抗网络生成预定导热率多孔介质. 物理学报, 2021, 70(5): 054401. doi: 10.7498/aps.70.20201061
    [4] 刘高洁, 邵子宇, 娄钦. 多孔介质中含有溶解反应的互溶驱替过程格子Boltzmann研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211851
    [5] 张先飞, 王玲玲, 朱海, 曾诚. 自由流体层与多孔介质层界面的盐指现象的统一域法模拟. 物理学报, 2020, 69(21): 214701. doi: 10.7498/aps.69.20200351
    [6] 娄钦, 黄一帆, 李凌. 不可压幂律流体气-液两相流格子Boltzmann 模型及其在多孔介质内驱替问题中的应用. 物理学报, 2019, 68(21): 214702. doi: 10.7498/aps.68.20190873
    [7] 仇浩淼, 夏唐代, 何绍衡, 陈炜昀. 流体/准饱和多孔介质中伪Scholte波的传播特性. 物理学报, 2018, 67(20): 204302. doi: 10.7498/aps.67.20180853
    [8] 何宗旭, 严微微, 张凯, 杨向龙, 魏义坤. 底部局部加热多孔介质自然对流传热的格子Boltzmann模拟. 物理学报, 2017, 66(20): 204402. doi: 10.7498/aps.66.204402
    [9] 贾宇鹏, 王景甫, 郑坤灿, 张兵, 潘刚, 龚志军, 武文斐. 应用粒子图像测试技术测量球床多孔介质单相流动的流场. 物理学报, 2016, 65(10): 106701. doi: 10.7498/aps.65.106701
    [10] 齐聪, 何光艳, 李意民, 何玉荣. 方腔内Cu/Al2O3水混合纳米流体自然对流的格子Boltzmann模拟. 物理学报, 2015, 64(2): 024703. doi: 10.7498/aps.64.024703
    [11] 张婷, 施保昌, 柴振华. 多孔介质内溶解与沉淀过程的格子Boltzmann方法模拟. 物理学报, 2015, 64(15): 154701. doi: 10.7498/aps.64.154701
    [12] 王平, 尹玉真, 沈胜强. 三维有序排列多孔介质对流换热的数值研究. 物理学报, 2014, 63(21): 214401. doi: 10.7498/aps.63.214401
    [13] 项蓉, 严微微, 苏中地, 吴杰, 张凯, 包福兵. 生物过滤器中非均匀性流动的数值研究. 物理学报, 2014, 63(16): 164702. doi: 10.7498/aps.63.164702
    [14] 何郁波, 林晓艳, 董晓亮. 应用格子Boltzmann模型模拟一类二维偏微分方程. 物理学报, 2013, 62(19): 194701. doi: 10.7498/aps.62.194701
    [15] 韩庆邦, 徐杉, 谢祖峰, 葛蕤, 王茜, 赵胜永, 朱昌平. Scholte波与含泥沙两相流介质属性关系的分析及仿真验证. 物理学报, 2013, 62(19): 194301. doi: 10.7498/aps.62.194301
    [16] 郑坤灿, 温治, 王占胜, 楼国锋, 刘训良, 武文斐. 前沿领域综述多孔介质强制对流换热研究进展. 物理学报, 2012, 61(1): 014401. doi: 10.7498/aps.61.014401
    [17] 员美娟, 郁伯铭, 郑伟, 袁洁. 多孔介质中卡森流体的分形分析. 物理学报, 2011, 60(2): 024703. doi: 10.7498/aps.60.024703
    [18] 赵明, 郁伯铭. 基于分形多孔介质三维网络模型的非混溶两相流驱替数值模拟. 物理学报, 2011, 60(9): 098103. doi: 10.7498/aps.60.098103
    [19] 罗莹莹, 詹杰民, 李毓湘. 多孔介质中盐指现象的数值模拟. 物理学报, 2008, 57(4): 2306-2313. doi: 10.7498/aps.57.2306
    [20] 崔志文, 王克协, 曹正良, 胡恒山. 多孔介质BISQ模型中的慢纵波. 物理学报, 2004, 53(9): 3083-3089. doi: 10.7498/aps.53.3083
计量
  • 文章访问数:  7222
  • PDF下载量:  465
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-23
  • 修回日期:  2015-08-20
  • 刊出日期:  2016-01-05

/

返回文章
返回