搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应用粒子图像测试技术测量球床多孔介质单相流动的流场

贾宇鹏 王景甫 郑坤灿 张兵 潘刚 龚志军 武文斐

引用本文:
Citation:

应用粒子图像测试技术测量球床多孔介质单相流动的流场

贾宇鹏, 王景甫, 郑坤灿, 张兵, 潘刚, 龚志军, 武文斐

Measurement of single phase flow in porous media using PIV technique

Jia Yu-Peng, Wang Jing-Fu, Zheng Kun-Can, Zhang Bing, Pan Gang, Gong Zhi-Jun, Wu Wen-Fei
PDF
导出引用
  • 多孔介质在生产生活以及科技发展中的应用十分广泛, 随着能源、化工、冶金和原子能等领域技术的发展, 以及近代工农业生产技术的进步, 大量多孔介质的传热传质问题逐渐出现, 进一步促进了多孔介质学科的形成和发展, 使其成为当今科学技术中令人瞩目的研究热点之一. 通过实验获得准确的实验图像和数据, 并使用相应软件对实验所得数据和流体流动图像进行深度分析, 这样既有真实可靠的实际数据, 又有直观的理论的支持, 使对多孔介质的研究更为完善. 实验结合粒子图像测试技术和折射率匹配技术对叉排排列玻璃球多孔介质填充床内的流体流动转变过程进行流场测试, 并提取数据, 采用Tecplot软件对提取数据进行处理, 得出流体流动机理的转变过程. 实验固相为由直径25 mm水晶玻璃球叉排堆积而成的填充床, 液相为65%苯甲醇和35% 无水乙醇配制的匹配液. 液相与固相的折射率都为1.477, 成功消除由于折射率不匹配引起的激光光线偏折. 实验得到雷诺数为 4.7 Re 1000时球床内流场图, 对比不同雷诺数时流场和流线变化得出: 随着雷诺数的增加, 流线变得越来越紊乱; 当雷诺数在220以上时, 球床内漩涡在尺寸变化上出现突跃, 在位置和形态变化表现出随机特征, 预示进入了稳定的湍流.
    Porous media are widely used in the production and living, and also in science and technology. With the development of energy, chemical industry, metallurgy, atomic energy and also with the progress of the modern industrial and agricultural production technology, a large number of heat and mass transfer problems in porous media gradually appear. Further promoting the development of the discipline about the formation and development of porous media becomes one of hot research points in the modern science and technology. It is expected that the accurate experimental picture and data can be obtained through the experiment, and the fluid flow picture and experimental data are analyzed in depth by using the corresponding software, so that the reliable data are obtained and the theory is supported intuitively, making the research of porous media more perfect. The experiment combined with particle image velocimetry technology and refractive index matching technique is conducted to test the transformation process of liquid flow in a random ball porous medium filled bed, and to extract the data. The extracted data are processed by using Tecplot software, and the transformation process of liquid flow mechanism is obtained. Experimental solid phase is a 25 mm-diameter crystal glass ball stacked bed, and liquid phase is the matching liquid prepared with the mixture of the 65% benzyl alcohol and 35% anhydrous ethanol. The refractive indexes of liquid phase and solid phase are both 1.477, which can successfully eliminate the laser light bending caused by the nismaching of refractive indexes. The flow field diagram in the pebble bed with Reynolds number Re in a range 4.7 Re 1000 is obtained experimentally. The comparisons of variations of flow field and flow lines among the different Reynolds numbers reveal that with the increase of Reynolds number, flow lines become more and more disorder: When the Reynolds number Rep exceeds 220, stable swirl flow inside the bed changes suddenly, and manifests a random feature in location and configuration, which forebodes its entrance into stable turbulence phase.
      通信作者: 王景甫, jfwang@bjut.edu.cn;zhengkuncan@hotmail.com ; 郑坤灿, jfwang@bjut.edu.cn;zhengkuncan@hotmail.com
    • 基金项目: 国家重点基础研究发展计划(批准号:2012CB720402)、国家自然科学基金(批准号:51166010)、内蒙古科技大学创新基金项目(批准号:2011NCL001)、内蒙古应用技术研究与开发资金计划(批准号:20130310)和内蒙古高校创新团队研究计划(批准号:NMGIRT1406)资助的课题.
      Corresponding author: Wang Jing-Fu, jfwang@bjut.edu.cn;zhengkuncan@hotmail.com ; Zheng Kun-Can, jfwang@bjut.edu.cn;zhengkuncan@hotmail.com
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2012CB720402), the National Natural Science Foundation of China (Grant No. 51166010), the Innovation Project of Inner Mongolia University of Science and Technology, China (Grant No. 2011NCL001), the Application Technology Research and Development Funds Plan in Inner Mongolia, China (Grant No. 20130310), and the Inner Mongolia University Innovation Team Research Plan, China (Grant No. NMGIRT1406).
    [1]

    Bear J (translated by Li J S, Chen C X) 1983 Dyanmics of Fluids in Porous Media (Beijing: China Building Industry Press) p789 (in Chinese) [比尔J 著 (李竞生, 陈崇希 译) 1983 多孔介质流体动力学 (北京: 中国建筑工业出版社) 第789 页]

    [2]

    Scheidegger A E 1974 Soil Sci. 46 259

    [3]

    Yarlagadda A P, Yoganathan A P 2010 Experiments in Fluids 8 59

    [4]

    Moroni M, Cushman J H, Cenedese A 2009 Transp. Porous Med. 79 43

    [5]

    Hassan Y A, Dominguez-Ontiveros E E 2008 Nuclear Engineering and Design 238 3080

    [6]

    Patil V A, Liberty J A 2012 ASME Fluids Engineering Division Summer Meeting(FEDSM) Rio Grande, Puerto Rico, July 8-12, 2012 p1001

    [7]

    Patil V A, Liberty J A 2012 Exp. Fluids 53 1453

    [8]

    Sen D, Nobesm D S, Mitra S K 2012 Microfluid. Nanofluid. 12 189

    [9]

    Iida T, Taneo A, Kaneda M and Suga K 2014 XXI Fluid Mechanics Conference: Journal of Physics Conference Series 530 012058

    [10]

    Yip R, James D F, Currie I G 2011 Exp. Fluids 51 801

    [11]

    Keramaris E, Pechlivanidis G 2013 J. Porous Media 16 21

    [12]

    Hfeli R, Altheimer M, Butscher D, von Rohr P R 2014 Exp. Fluids 55 17

    [13]

    Arthur J K, Ruth D W, Tachie M F 2013 Transport Porous Med. 97 5

    [14]

    Cai J C, Yu B M 2012 Progress in Mechanics 42 735 (in Chinese) [蔡建超, 郁伯铭 2012 力学进展 42 735]

    [15]

    Xu L F, Chen G, Li J Z 2003 J. Mech. 33 533 (in Chinese) [徐联锋, 陈刚, 李建中 2003 力学进展 33 533]

    [16]

    Wiederseiner S, Andreini N, Epely-Chauvin G 2011 Exp. Fluids 50 1183

    [17]

    Zhang C J, Zhang M Y, Lu Y 2002 Journal of Xian Jiao Tong University 36 1125 (in Chinese) [张超杰, 张鸣远, 卢勇 2002 西安交通大学学报 36 1125]

  • [1]

    Bear J (translated by Li J S, Chen C X) 1983 Dyanmics of Fluids in Porous Media (Beijing: China Building Industry Press) p789 (in Chinese) [比尔J 著 (李竞生, 陈崇希 译) 1983 多孔介质流体动力学 (北京: 中国建筑工业出版社) 第789 页]

    [2]

    Scheidegger A E 1974 Soil Sci. 46 259

    [3]

    Yarlagadda A P, Yoganathan A P 2010 Experiments in Fluids 8 59

    [4]

    Moroni M, Cushman J H, Cenedese A 2009 Transp. Porous Med. 79 43

    [5]

    Hassan Y A, Dominguez-Ontiveros E E 2008 Nuclear Engineering and Design 238 3080

    [6]

    Patil V A, Liberty J A 2012 ASME Fluids Engineering Division Summer Meeting(FEDSM) Rio Grande, Puerto Rico, July 8-12, 2012 p1001

    [7]

    Patil V A, Liberty J A 2012 Exp. Fluids 53 1453

    [8]

    Sen D, Nobesm D S, Mitra S K 2012 Microfluid. Nanofluid. 12 189

    [9]

    Iida T, Taneo A, Kaneda M and Suga K 2014 XXI Fluid Mechanics Conference: Journal of Physics Conference Series 530 012058

    [10]

    Yip R, James D F, Currie I G 2011 Exp. Fluids 51 801

    [11]

    Keramaris E, Pechlivanidis G 2013 J. Porous Media 16 21

    [12]

    Hfeli R, Altheimer M, Butscher D, von Rohr P R 2014 Exp. Fluids 55 17

    [13]

    Arthur J K, Ruth D W, Tachie M F 2013 Transport Porous Med. 97 5

    [14]

    Cai J C, Yu B M 2012 Progress in Mechanics 42 735 (in Chinese) [蔡建超, 郁伯铭 2012 力学进展 42 735]

    [15]

    Xu L F, Chen G, Li J Z 2003 J. Mech. 33 533 (in Chinese) [徐联锋, 陈刚, 李建中 2003 力学进展 33 533]

    [16]

    Wiederseiner S, Andreini N, Epely-Chauvin G 2011 Exp. Fluids 50 1183

    [17]

    Zhang C J, Zhang M Y, Lu Y 2002 Journal of Xian Jiao Tong University 36 1125 (in Chinese) [张超杰, 张鸣远, 卢勇 2002 西安交通大学学报 36 1125]

  • [1] 金燕, 石子璇, 金奕扬, 田文得, 张天辉, 陈康. 有限多孔介质诱导活性哑铃的聚集行为. 物理学报, 2024, 73(16): 160502. doi: 10.7498/aps.73.20240784
    [2] 张沐安, 王进卿, 吴睿, 冯致, 詹明秀, 徐旭, 池作和. 多孔介质内气泡Ostwald熟化特性三维孔网数值模拟. 物理学报, 2023, 72(16): 164701. doi: 10.7498/aps.72.20230695
    [3] 刘高洁, 邵子宇, 娄钦. 多孔介质中含溶解反应的互溶驱替过程格子Boltzmann研究. 物理学报, 2022, 71(5): 054702. doi: 10.7498/aps.71.20211851
    [4] 刘高洁, 邵子宇, 娄钦. 多孔介质中含有溶解反应的互溶驱替过程格子Boltzmann研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211851
    [5] 唐国智, 汪垒, 李顶根. 使用条件生成对抗网络生成预定导热率多孔介质. 物理学报, 2021, 70(5): 054401. doi: 10.7498/aps.70.20201061
    [6] 张先飞, 王玲玲, 朱海, 曾诚. 自由流体层与多孔介质层界面的盐指现象的统一域法模拟. 物理学报, 2020, 69(21): 214701. doi: 10.7498/aps.69.20200351
    [7] 乔厚, 何锃, 张恒堃, 彭伟才, 江雯. 二维含多孔介质周期复合结构声传播分析. 物理学报, 2019, 68(12): 128101. doi: 10.7498/aps.68.20190164
    [8] 娄钦, 黄一帆, 李凌. 不可压幂律流体气-液两相流格子Boltzmann 模型及其在多孔介质内驱替问题中的应用. 物理学报, 2019, 68(21): 214702. doi: 10.7498/aps.68.20190873
    [9] 仇浩淼, 夏唐代, 何绍衡, 陈炜昀. 流体/准饱和多孔介质中伪Scholte波的传播特性. 物理学报, 2018, 67(20): 204302. doi: 10.7498/aps.67.20180853
    [10] 何宗旭, 严微微, 张凯, 杨向龙, 魏义坤. 底部局部加热多孔介质自然对流传热的格子Boltzmann模拟. 物理学报, 2017, 66(20): 204402. doi: 10.7498/aps.66.204402
    [11] 刘高洁, 郭照立, 施保昌. 多孔介质中流体流动及扩散的耦合格子Boltzmann模型. 物理学报, 2016, 65(1): 014702. doi: 10.7498/aps.65.014702
    [12] 李江, 唐敬友, 裴旺, 魏贤华, 黄峰. 椭偏精确测定透明衬底上吸收薄膜的厚度及光学常数. 物理学报, 2015, 64(11): 110702. doi: 10.7498/aps.64.110702
    [13] 张婷, 施保昌, 柴振华. 多孔介质内溶解与沉淀过程的格子Boltzmann方法模拟. 物理学报, 2015, 64(15): 154701. doi: 10.7498/aps.64.154701
    [14] 王平, 尹玉真, 沈胜强. 三维有序排列多孔介质对流换热的数值研究. 物理学报, 2014, 63(21): 214401. doi: 10.7498/aps.63.214401
    [15] 韩庆邦, 徐杉, 谢祖峰, 葛蕤, 王茜, 赵胜永, 朱昌平. Scholte波与含泥沙两相流介质属性关系的分析及仿真验证. 物理学报, 2013, 62(19): 194301. doi: 10.7498/aps.62.194301
    [16] 郑坤灿, 温治, 王占胜, 楼国锋, 刘训良, 武文斐. 前沿领域综述多孔介质强制对流换热研究进展. 物理学报, 2012, 61(1): 014401. doi: 10.7498/aps.61.014401
    [17] 员美娟, 郁伯铭, 郑伟, 袁洁. 多孔介质中卡森流体的分形分析. 物理学报, 2011, 60(2): 024703. doi: 10.7498/aps.60.024703
    [18] 赵明, 郁伯铭. 基于分形多孔介质三维网络模型的非混溶两相流驱替数值模拟. 物理学报, 2011, 60(9): 098103. doi: 10.7498/aps.60.098103
    [19] 罗莹莹, 詹杰民, 李毓湘. 多孔介质中盐指现象的数值模拟. 物理学报, 2008, 57(4): 2306-2313. doi: 10.7498/aps.57.2306
    [20] 崔志文, 王克协, 曹正良, 胡恒山. 多孔介质BISQ模型中的慢纵波. 物理学报, 2004, 53(9): 3083-3089. doi: 10.7498/aps.53.3083
计量
  • 文章访问数:  7079
  • PDF下载量:  209
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-08
  • 修回日期:  2016-03-09
  • 刊出日期:  2016-05-05

/

返回文章
返回