Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical simulation of natural convection of square enclosure filled with Cu/Al2O3-water mixed nanofluid based on lattice Boltzmann method

Qi Cong He Guang-Yan Li Yi-Min He Yu-Rong

Citation:

Numerical simulation of natural convection of square enclosure filled with Cu/Al2O3-water mixed nanofluid based on lattice Boltzmann method

Qi Cong, He Guang-Yan, Li Yi-Min, He Yu-Rong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • As an effective heat transfer medium, Nanofluid is used widely in heat transfer field. However, due to the contradiction between the heat conductivity coefficient of nanofluid and the cost of nanoparticles, a new mixed nanofluid is developed. In order to investigate the natural convection heat transfer characteristics and the interaction mechanism between nanoparticles, the lattice Boltzmann equations of nanofluid flow and temperature fields are deduced by multi-scale technique based on considering the interaction forces between nanoparticles, and the lattice Boltzmann model of Cu/Al2O3-water mixed nanofluid is established by coupling the evolution equations of flow with temperature fields. Nanoparticles distribution in enclosure and interaction forces between nanoparticles are investigated, it is found that Brownian motion force is far bigger than any other forces, and the effects of temperature difference driving force and Brownian motion force on nanoparticles distribution are biggest. In addition, the effects of nanoparticles fractions and Rayleigh number on natural convection are investigated, and the natural convection heat transfer characteristics of mixed nanofluid (Cu/Al2O3-water) are compared with those of single metal nanoparticle nanofluid (Al2O3-water). It is found that the mixed nanofluid has a higher heat transfer characteristic than other common nanofluid.
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 2014QNA23).
    [1]

    Choi U S 1995 ASME FED. 1995 99

    [2]

    Li Y T, Shen L P, Wang H, Wang H B 2013 Acta Phys. Sin. 62 124401 (in Chinese) [李屹同, 沈谅平, 王浩, 汪汉斌 2013 物理学报 62 124401]

    [3]

    Ahmad A, Asghar S, Alsaedi A 2014 Chin. Phys. B 23 074401

    [4]

    Salem A M, Ismail G, Fathy R 2014 Chin. Phys. B 23 044402

    [5]

    Hatat T, Imtiaz M, Alsaedi A, Mansoor R 2014 Chin. Phys. B 23 054701

    [6]

    Khalili S, Dinarvand S, Hosseini R, Tamim H, Pop I 2014 Chin. Phys. B 23 048203

    [7]

    Xiao B Q 2013 Chin. Phys. B 22 014402

    [8]

    Xiao B Q, Yang Y, Xu X F 2014 Chin. Phys. B 23 026601

    [9]

    Oztop H F, Abu-Nada E 2008 Int. J. Heat Fluid Flow 29 1326

    [10]

    Ho C J, Chen M W, Li Z W 2008 Int. J. Heat Mass Transfer 51 4506

    [11]

    Saleh H, Roslan R, Hashim I 2011 Int. J. Heat Mass Transfer 54 194

    [12]

    Ghasemi B, Aminossadati S M 2010 Int. J. Therm. Sci. 49 931

    [13]

    Xie H Q, Chen L F 2009 Acta Phys. Sin. 58 2513 (in Chinese) [谢华清, 陈立飞 2009 物理学报 58 2513]

    [14]

    Xiao B Q, Fan J T, Jiang G P, Chen L X 2012 Acta Phys. Sin. 61 154401 (in Chinese) [肖波齐, 范金土, 蒋国平, 陈玲霞 2012 物理学报 61 154401]

    [15]

    Xie H Q, Zeng Z, Zhang L Q, Liang G Y, Hiroshi M, Youshiyuki K 2012 Chin. Phys. B 21 124703

    [16]

    He Y B, Lin X Y, Dong X L 2013 Acta Phys. Sin. 62 194701 (in Chinese) [何郁波, 林晓艳, 董晓亮 2013 物理学报 62 194701]

    [17]

    Ren S, Zhang J Z, Zhang Y M, Wei D 2014 Acta Phys. Sin. 63 024702 (in Chinese) [任晟, 张家忠, 张亚苗, 卫丁 2014 物理学报 63 024702]

    [18]

    Guo Z L, Shi B C, Wang N C 2000 J. Comput. Phys. 165 288

    [19]

    Guo Z, Shi B, Zheng C 2002 Int. J. Numer. Methods Fluids 39 325

    [20]

    Guo Z, Zheng C, Shi B, Zhao T S 2007 Phys. Rev. E 75 1

    [21]

    Xuan Y, Yao Z 2005 Heat Mass Transfer 41 199

    [22]

    Wang Y, He Y L, Tong C Q, Liu Y W 2007 J. Eng. Thermophys. 28 313 (in Chinese) [王勇, 何雅玲, 童长青, 刘迎文 2007 工程热物理学报 28 313]

    [23]

    Guo Z L, Li Q, Zheng C G 2002 Chin. J. Comput. Phys. 19 483 (in Chinese) [郭照立, 李青, 郑楚光 2002 计算物理 19 483]

    [24]

    Zhou L J, Xuan Y M, Li Q 2009 Chin. J. Comput. Phys. 26 631 (in Chinese) [周陆军, 宣益民, 李强 2009 计算物理 26 631]

    [25]

    Guo Y L, Xu H H, Shen S Q, Wei L 2013 Acta Phys. Sin. 62 144704 (in Chinese) [郭亚丽, 徐鹤函, 沈胜强, 魏兰 2013 物理学报 62 144704]

    [26]

    Kefayati G H R, Hosseinizadeh S F, Gorji M, Sajjadi H 2011 Int. Commun. Heat Mass Transfer 38 798

    [27]

    Lai F H, Yang Y T 2011 Int. J. Therm. Sci. 50 1930

    [28]

    Guiet J, Reggio M, Vasseur P 2011 Comput. Therm. Sci. 3 1

    [29]

    Nemati H, Farhadi M, Sedighi K, Ashorynejad H R, Fattahi E 2012 Sci. Iran. B 19 303

    [30]

    Zhou L J, Xuan Y M, Li Q 2010 Int. J. Multiphase Flow 36 364

    [31]

    Russel W B, Saville D A, Schowalter W R 1989 Colloidal Dispersion (Cambridge: Cambridge University Press) pp30-45

    [32]

    Tian W C, Jia J Y, Chen G Y 2006 Chin. J. Comput. Phys. 23 366 (in Chinese) [田文超, 贾建援, 陈光炎 2006 计算物理 23 366]

    [33]

    Zhou T, Li H Z 1999 Chem. React. Eng. Technol. 115 1 (in Chinese) [周涛, 李洪钟 1999 化学反应工程与工艺 115 1]

    [34]

    He C, Ahmadi G 1999 J. Aerosol. Sci. 30 739

    [35]

    Abu-Nada E 2009 Int. J. Heat Fluid Flow 30 679

    [36]

    Abu-Nada E, Oztop H F 2009 Int. J. Heat Fluid Flow 30 669

    [37]

    L X Y 2006 Ph. D. Dissertation (Shanghai: Fudan University) (in Chinese) [吕晓阳2006 博士学位论文 (上海:复旦大学)]

    [38]

    Hortmann M, Perić M, Scheuerer G 1990 Int. J. Numer. Methods Fluids 11 189

    [39]

    Khanafer K, Vafai K, Lightstone M 2003 Int. J. Heat Mass Transfer 46 3639

    [40]

    D'Orazio A, Corcione M, Celata G P 2004 Int. J. Therm. Sci. 43 575

    [41]

    De Vahl Davis G 1983 Int. J. Numer. Methods Fluids 3 249

    [42]

    Barakos G, Mistoulis E, Assimacopoulos D 1994 Int. J. Numer. Methods Fluids 18 695

    [43]

    Fusegi T, Hyun J M, Kuwahara K, Farouk B 1991 Int. J. Heat Mass Transfer 34 1543

    [44]

    Krane R J, Jessee J 1983 Proceedings of the 1th ASME-JSME Thermal Engineering Joint Conference Honolulu, Hawaii 1983 p323

  • [1]

    Choi U S 1995 ASME FED. 1995 99

    [2]

    Li Y T, Shen L P, Wang H, Wang H B 2013 Acta Phys. Sin. 62 124401 (in Chinese) [李屹同, 沈谅平, 王浩, 汪汉斌 2013 物理学报 62 124401]

    [3]

    Ahmad A, Asghar S, Alsaedi A 2014 Chin. Phys. B 23 074401

    [4]

    Salem A M, Ismail G, Fathy R 2014 Chin. Phys. B 23 044402

    [5]

    Hatat T, Imtiaz M, Alsaedi A, Mansoor R 2014 Chin. Phys. B 23 054701

    [6]

    Khalili S, Dinarvand S, Hosseini R, Tamim H, Pop I 2014 Chin. Phys. B 23 048203

    [7]

    Xiao B Q 2013 Chin. Phys. B 22 014402

    [8]

    Xiao B Q, Yang Y, Xu X F 2014 Chin. Phys. B 23 026601

    [9]

    Oztop H F, Abu-Nada E 2008 Int. J. Heat Fluid Flow 29 1326

    [10]

    Ho C J, Chen M W, Li Z W 2008 Int. J. Heat Mass Transfer 51 4506

    [11]

    Saleh H, Roslan R, Hashim I 2011 Int. J. Heat Mass Transfer 54 194

    [12]

    Ghasemi B, Aminossadati S M 2010 Int. J. Therm. Sci. 49 931

    [13]

    Xie H Q, Chen L F 2009 Acta Phys. Sin. 58 2513 (in Chinese) [谢华清, 陈立飞 2009 物理学报 58 2513]

    [14]

    Xiao B Q, Fan J T, Jiang G P, Chen L X 2012 Acta Phys. Sin. 61 154401 (in Chinese) [肖波齐, 范金土, 蒋国平, 陈玲霞 2012 物理学报 61 154401]

    [15]

    Xie H Q, Zeng Z, Zhang L Q, Liang G Y, Hiroshi M, Youshiyuki K 2012 Chin. Phys. B 21 124703

    [16]

    He Y B, Lin X Y, Dong X L 2013 Acta Phys. Sin. 62 194701 (in Chinese) [何郁波, 林晓艳, 董晓亮 2013 物理学报 62 194701]

    [17]

    Ren S, Zhang J Z, Zhang Y M, Wei D 2014 Acta Phys. Sin. 63 024702 (in Chinese) [任晟, 张家忠, 张亚苗, 卫丁 2014 物理学报 63 024702]

    [18]

    Guo Z L, Shi B C, Wang N C 2000 J. Comput. Phys. 165 288

    [19]

    Guo Z, Shi B, Zheng C 2002 Int. J. Numer. Methods Fluids 39 325

    [20]

    Guo Z, Zheng C, Shi B, Zhao T S 2007 Phys. Rev. E 75 1

    [21]

    Xuan Y, Yao Z 2005 Heat Mass Transfer 41 199

    [22]

    Wang Y, He Y L, Tong C Q, Liu Y W 2007 J. Eng. Thermophys. 28 313 (in Chinese) [王勇, 何雅玲, 童长青, 刘迎文 2007 工程热物理学报 28 313]

    [23]

    Guo Z L, Li Q, Zheng C G 2002 Chin. J. Comput. Phys. 19 483 (in Chinese) [郭照立, 李青, 郑楚光 2002 计算物理 19 483]

    [24]

    Zhou L J, Xuan Y M, Li Q 2009 Chin. J. Comput. Phys. 26 631 (in Chinese) [周陆军, 宣益民, 李强 2009 计算物理 26 631]

    [25]

    Guo Y L, Xu H H, Shen S Q, Wei L 2013 Acta Phys. Sin. 62 144704 (in Chinese) [郭亚丽, 徐鹤函, 沈胜强, 魏兰 2013 物理学报 62 144704]

    [26]

    Kefayati G H R, Hosseinizadeh S F, Gorji M, Sajjadi H 2011 Int. Commun. Heat Mass Transfer 38 798

    [27]

    Lai F H, Yang Y T 2011 Int. J. Therm. Sci. 50 1930

    [28]

    Guiet J, Reggio M, Vasseur P 2011 Comput. Therm. Sci. 3 1

    [29]

    Nemati H, Farhadi M, Sedighi K, Ashorynejad H R, Fattahi E 2012 Sci. Iran. B 19 303

    [30]

    Zhou L J, Xuan Y M, Li Q 2010 Int. J. Multiphase Flow 36 364

    [31]

    Russel W B, Saville D A, Schowalter W R 1989 Colloidal Dispersion (Cambridge: Cambridge University Press) pp30-45

    [32]

    Tian W C, Jia J Y, Chen G Y 2006 Chin. J. Comput. Phys. 23 366 (in Chinese) [田文超, 贾建援, 陈光炎 2006 计算物理 23 366]

    [33]

    Zhou T, Li H Z 1999 Chem. React. Eng. Technol. 115 1 (in Chinese) [周涛, 李洪钟 1999 化学反应工程与工艺 115 1]

    [34]

    He C, Ahmadi G 1999 J. Aerosol. Sci. 30 739

    [35]

    Abu-Nada E 2009 Int. J. Heat Fluid Flow 30 679

    [36]

    Abu-Nada E, Oztop H F 2009 Int. J. Heat Fluid Flow 30 669

    [37]

    L X Y 2006 Ph. D. Dissertation (Shanghai: Fudan University) (in Chinese) [吕晓阳2006 博士学位论文 (上海:复旦大学)]

    [38]

    Hortmann M, Perić M, Scheuerer G 1990 Int. J. Numer. Methods Fluids 11 189

    [39]

    Khanafer K, Vafai K, Lightstone M 2003 Int. J. Heat Mass Transfer 46 3639

    [40]

    D'Orazio A, Corcione M, Celata G P 2004 Int. J. Therm. Sci. 43 575

    [41]

    De Vahl Davis G 1983 Int. J. Numer. Methods Fluids 3 249

    [42]

    Barakos G, Mistoulis E, Assimacopoulos D 1994 Int. J. Numer. Methods Fluids 18 695

    [43]

    Fusegi T, Hyun J M, Kuwahara K, Farouk B 1991 Int. J. Heat Mass Transfer 34 1543

    [44]

    Krane R J, Jessee J 1983 Proceedings of the 1th ASME-JSME Thermal Engineering Joint Conference Honolulu, Hawaii 1983 p323

  • [1] Sui Peng-xiang. Effect of nanoparticle size on natural convection patterns of nanofluids with the lattice Boltzmann method. Acta Physica Sinica, 2024, 73(23): 1-13. doi: 10.7498/aps.73.20241332
    [2] Liu Cheng, Liang Hong. Axisymmetric lattice Boltzmann model for three-phase fluids and its application to the Rayleigh-Plateau instability. Acta Physica Sinica, 2023, 72(4): 044701. doi: 10.7498/aps.72.20221967
    [3] Lu Wei, Chen Shuo, Yu Zhi-Yuan, Zhao Jia-Yi, Zhang Kai-Xuan. Improvement of natural convection simulation based on energy conservation dissipative particle dynamics. Acta Physica Sinica, 2023, 72(18): 180203. doi: 10.7498/aps.72.20230495
    [4] Zhang Bei-Hao, Zheng Lin. Numerical simulation of natural convection of nanofluids in an inclined square porous enclosure by lattice Boltzmann method. Acta Physica Sinica, 2020, 69(16): 164401. doi: 10.7498/aps.69.20200308
    [5] Lou Qin, Huang Yi-Fan, Li Ling. Lattice Boltzmann model of gas-liquid two-phase flow of incomprssible power-law fluid and its application in the displacement problem of porous media. Acta Physica Sinica, 2019, 68(21): 214702. doi: 10.7498/aps.68.20190873
    [6] He Zong-Xu, Yan Wei-Wei, Zhang Kai, Yang Xiang-Long, Wei Yi-Kun. Simulation of effect of bottom heat source on natural convective heat transfer characteristics in a porous cavity by lattice Boltzmann method. Acta Physica Sinica, 2017, 66(20): 204402. doi: 10.7498/aps.66.204402
    [7] Liu Gao-Jie, Guo Zhao-Li, Shi Bao-Chang. A coupled lattice Boltzmann model for fluid flow and diffusion in a porous medium. Acta Physica Sinica, 2016, 65(1): 014702. doi: 10.7498/aps.65.014702
    [8] Liu Fei-Fei, Wei Shou-Shui, Wei chang-Zhi, Ren Xiao-Fei. Coupling double-distribution-function thermal lattice Boltzmann method based on the total energy type. Acta Physica Sinica, 2015, 64(15): 154401. doi: 10.7498/aps.64.154401
    [9] Huang Xin, Peng Shu-Ming, Zhou Xiao-Song, Yu Ming-Ming, Yin Jian, Wen Cheng-Wei. Numerical simulation of heat transfer and natural convection of the indirect-driven cryogenic target. Acta Physica Sinica, 2015, 64(21): 215201. doi: 10.7498/aps.64.215201
    [10] Lei Juan-Mian, Yang Hao, Huang Can. Comparisons among weakly-compressible and incompressible smoothed particle hdrodynamic algorithms for natural convection. Acta Physica Sinica, 2014, 63(22): 224701. doi: 10.7498/aps.63.224701
    [11] Mao Wei, Guo Zhao-Li, Wang Liang. Lattice Boltzmann simulation of the sedimentation of particles with thermal convection. Acta Physica Sinica, 2013, 62(8): 084703. doi: 10.7498/aps.62.084703
    [12] Guo Ya-Li, Xu He-Han, Shen Sheng-Qiang, Wei Lan. Nanofluid Raleigh-Benard convection in rectangular cavity: simulation with lattice Boltzmann method. Acta Physica Sinica, 2013, 62(14): 144704. doi: 10.7498/aps.62.144704
    [13] He Yu-Bo, Lin Xiao-Yan, Dong Xiao-Liang. Use of lattice Boltzmann method to simulate 2-D partial differential equation. Acta Physica Sinica, 2013, 62(19): 194701. doi: 10.7498/aps.62.194701
    [14] Xiao Bo-Qi, Fan Jin-Tu, Jiang Guo-Ping, Chen Ling-Xia. Analysis of convection heat transfer mechanism in nanofluids. Acta Physica Sinica, 2012, 61(15): 154401. doi: 10.7498/aps.61.154401
    [15] Wen Jian, Tian Huan-Huan, Xue Yu. Lattice hydrodynamic model for pedestrian traffic with the next-nearest-neighbor pedestrian. Acta Physica Sinica, 2010, 59(6): 3817-3823. doi: 10.7498/aps.59.3817
    [16] Sun Dong-Ke, Zhu Ming-Fang, Yang Chao-Rong, Pan Shi-Yan, Dai Ting. Modelling of dendritic growth in forced and natural convections. Acta Physica Sinica, 2009, 58(13): 285-S291. doi: 10.7498/aps.58.285
    [17] Zhao Ying, Ji Zhong-Zhen, Feng Tao. Simulation of thermal convection in a vertical slot using the lattice Boltzmann model. Acta Physica Sinica, 2004, 53(3): 671-675. doi: 10.7498/aps.53.671
    [18] Yu Hui-Dan, Zhao Kai-Hua. . Acta Physica Sinica, 2000, 49(4): 816-818. doi: 10.7498/aps.49.816
    [19] LIU MU-REN, CHEN RUO-HANG, LI HUA-BING, KONG LING-JIANG. A LATTICE BOLTZMANN METHOD FOR TWO-DIMENSIONAL CONVECTION-DIFFUSION EQUATION. Acta Physica Sinica, 1999, 48(10): 1800-1803. doi: 10.7498/aps.48.1800
    [20] YU HUI-DAN, ZHAO KAI-HUA. LATTICE BOLTZMANN MODEL FOR COMPRESSIBLE FLOW SIMULATION. Acta Physica Sinica, 1999, 48(8): 1470-1476. doi: 10.7498/aps.48.1470
Metrics
  • Abstract views:  6033
  • PDF Downloads:  715
  • Cited By: 0
Publishing process
  • Received Date:  08 June 2014
  • Accepted Date:  22 July 2014
  • Published Online:  05 January 2015

/

返回文章
返回